Physico-chemical and biological parameters were monitored both throughout different oxygen cut off and starvation (OCS) times (6 h-72 h) and after the restoration of normal operational conditions. Sludge apparent viscosity and soluble extracellular polymeric substances (EPS) characteristics were measured to determine the activated sludge (AS) properties. Oxygen transfer, biological activity with specific oxygen uptake rate (SOUR) measurements during endogenous/exogenous conditions (without any external substrate/with external substrate consumption) and chemical oxygen demand (COD) removal were measured to assess the AS performances. During the different stress times, AS deflocculated as a decrease of apparent viscosity was observed and microorganisms biodegraded the released EPS to survive. After aeration return, and under endogenous conditions, size exclusion chromatographic fingerprints of soluble EPS were modified and macromolecules probably of type humic-like substances appeared in significant quantities. These new macromolecules presumably acted as biosurfactants. Consequently, the liquid surface tension, as well as the oxygen transfer rate (OTR), decreased. Under exogenous conditions, high biological activity (SOUR = 11.8 +/- 2.1 mg(O2 x g(MLVSS)(-1) x h(-1)) compensated the decrease of oxygen transfer. Finally, AS biomass maintained a constant COD degradation rate (15.7 +/- 1.9 mg(O2) x g(MLVSS)(-1) x h(-1)) before and after the disturbances for all times tested. This work demonstrates that AS microorganisms can counteract concomitant oxygen and nutrients shortage when the duration of such a condition does not exceed 72 h. Dissociation of endogenous/exogenous conditions appears to offer an ideal laboratory model to study EPS and biomass activity effects on oxygen transfer.

Download full-text PDF

Source
http://dx.doi.org/10.1080/09593330.2012.722689DOI Listing

Publication Analysis

Top Keywords

oxygen transfer
16
biological activity
12
oxygen cut
8
cut starvation
8
activated sludge
8
oxygen
8
apparent viscosity
8
endogenous/exogenous conditions
8
+/- mgo2
8
mgo2 gmlvss-1
8

Similar Publications

A low oxygen level in solid tumors is behind the modern concept of selective chemotherapy by hypoxia-activated prodrugs, such as heteroleptic complexes of transition metals (cobalt(III), iron(III) or platinum(IV)) with bi- or tetradentate ligands and an anticancer drug molecule as a co-ligand. A series of new cobalt(III) complexes [Co(LR)(esc)]ClO with esculetin (6,7-dihydroxycoumarin) and 2,2'-bipyridines (2,2'-bipy) functionalized by different substituents R were probed in the hypoxia-activated delivery of this model anticancer drug. Their combined study by cyclic voltammetry and NMR spectroscopy allowed identifying linear correlations of the electrochemical reduction potentials and the rate of the hypoxia-activated dissociation of [Co(LR)(esc)]ClO with the Hammett constants of the substituents in 2,2'-bipy ligands.

View Article and Find Full Text PDF

Efficient separation of photogenerated charge carriers is essential for maximizing the photocatalytic efficiency of semiconductor materials in oxygen evolution reactions (OER). This study presents a novel trimetallic photocatalyst, MIL-100(Fe)/TiO/CoO, synthesized through a facile microwave-assisted hydrothermal method followed by atomic layer deposition (ALD). The porous MIL-100(Fe) serves as a support for the sequential deposition of TiO and CoO layers ALD, which enhances electron-hole pair separation and minimizes their recombination.

View Article and Find Full Text PDF

The design of well-engineered bifunctional electrocatalysts is crucial for achieving durable and efficient performance in overall water splitting. In this study, Ru-doped FeMn-MOF-74 itself has Ru sites and generates FeMnOOH under catalytic conditions, forming dual active sites for overall water splitting. Density functional theory (DFT) calculations demonstrate that the Ru dopants exhibit optimized binding strength for H* and enhanced hydrogen evolution reaction (HER) performance.

View Article and Find Full Text PDF

Modulating Electronic Spin State of Perovskite Fluoride by Ni─F─Mn Bond Activating the Dynamic Site of Oxygen Reduction Reaction.

Small

January 2025

Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing, 100875, P. R. China.

Establishing the relationship between catalytic performance and material structure is crucial for developing design principles for highly active catalysts. Herein, a type of perovskite fluoride, NHMnF, which owns strong-field coordination including fluorine and ammonia, is in situ grown on carbon nanotubes (CNTs) and used as a model structure to study and improve the intrinsic catalytic activity through heteroatom doping strategies. This approach optimizes spin-dependent orbital interactions to alter the charge transfer between the catalyst and reactants.

View Article and Find Full Text PDF

Ferroelectric polarization is considered to be an effective strategy to improve the oxygen evolution reaction (OER) of photoelectrocatalysis. The primary challenge is to clarify how the polarization field controls the OER dynamic pathway at a molecular level. Here, electrochemical fingerprint tests were used, together with theoretical calculations, to systematically investigate the free energy change in oxo and hydroxyl intermediates on TiO-BaTiO core-shell nanowires (BTO@TiO) upon polarization in different pH environments.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!