The epithelium of mucosal and skin surfaces serves as a permeability barrier and affords mechanisms for local immune defense. Crucial to the development and maintenance of a properly functioning epithelium is the balance of cell proliferation, differentiation, and death. Here we show that this balance depends on cross-regulatory interactions among multiple protein kinase-mediated signals and their coordinated transmission. From an investigation of conditional gene knock-out mice, we find that epithelial-specific loss of the protein kinase p38α leads to aberrant activation of TAK1, JNK, EGF receptor, and ERK in distinct microanatomical areas of the intestines and skin. Consequently, the epithelial tissues display excessive proliferation, inadequate differentiation, and sensitivity to apoptosis. These anomalies leave the tissue prone to damage and collapse at the trigger of an environmental insult. The vulnerability of p38α-deficient epithelium predicts adverse effects of long term pharmacological p38α inhibition; yet such limitations could be overcome by concomitant blockade of one or more of the dysregulated protein kinase signaling pathways.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3745325 | PMC |
http://dx.doi.org/10.1074/jbc.M113.452029 | DOI Listing |
Am J Surg Pathol
January 2025
Department of Pathology, Johns Hopkins University, Baltimore, MD.
Low-grade gliomas and reactive piloid gliosis can present with overlapping features on conventional histology. Given the large implications for patient treatment, there is a need for effective methods to discriminate these morphologically similar but clinically distinct entities. Using routinely available stains, we hypothesize that a limited panel including SOX10, p16, and cyclin D1 may be useful in differentiating mitogen-activated protein (MAP) kinase-activated low-grade gliomas from piloid gliosis.
View Article and Find Full Text PDFBackground And Aim: The high rate of tumor growth results in an increased need for amino acids. As solute carriers (SLC) transporters are capable of transporting different amino acids, cancer may develop as a result of these transporters' over-expression due to their complex formation with other biological molecules. Therefore, this review investigated the role of SLC transporters in the progression of cancer.
View Article and Find Full Text PDFDrug Des Devel Ther
January 2025
Department of Anesthesiology, The Affiliated Hospital of Qingdao University, Qingdao, People's Republic of China.
Introduction: The mechanism of remimazolam, a benzodiazepine that activates γ-aminobutyric acid a (GABAa) receptors, in cerebral ischemia/reperfusion (I/R) injury is not well understood. Therefore, we explored whether remimazolam activates protein kinase B (AKT)/glycogen synthase kinase-3β (GSK-3β)/nuclear factor erythroid 2-related factor 2 (NRF2) to attenuate brain I/R injury in transcerebral I/R-injured rats and transoxygenic glucose deprivation/reperfusion (OGD/R)-injured SY5Y cells.
Material And Methods: Remimazolam was added at the beginning of cell and rat reperfusion, and the PI3K/AKT inhibitor LY294002 was added to inhibit the AKT/GSK-3β/NRF2 pathway 24 h before cellular OGD/R treatment and 30 min before rat brain I/R treatment.
J Tradit Complement Med
January 2025
The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China.
Background And Aim: The NLRP3 inflammasome can be activated after intracerebral hemorrhage (ICH), triggering an inflammatory response in the brain. Chinese herbal medicine Zhongfeng Xingnao Prescription (ZFXN) is commonly used in China for intracerebral hemorrhage treatment. However, the underlying treatment mechanism of it is unclear.
View Article and Find Full Text PDFCurr Mol Pharmacol
January 2025
Department of Cardiology, Affiliated People's Hospital of Jiangsu University, Zhenjiang 212000, Jiangsu, China.
Aims: Cardiac fibrosis causes most pathological alterations of cardiomyopathy in diabetes and heart failure patients. The activation and transformation of cardiac fibroblasts (CFs) are the main pathological mechanisms of cardiac fibrosis. It has been established that Sirtuin1 (Sirt1) plays a protective role in the pathogenesis of cardiovascular disorders.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!