This study was undertaken to investigate the pecten oculi of stork by using macroscopic, light and electron microscopic techniques. A total of 20 eyes that were obtained from 10 storks were used. The eyes were cleaned and isolated by dissection. After various procedures, four of the pecten oculi were examined by light microscope while the other four with an electron microscope. The remaining 12 eyes were assigned for macroscopic investigation. Pecten oculi of the stork were determined as accordion-like structures that originated from n. opticus, consisting of 15-17 plica and projecting up to 2/5 of the diameter of the bulbus oculi. Light microscopic examination revealed two types of blood vessels. Afferent-efferent vessels were larger in diamater (40-45 µm), fewer in numbers, and the capillary vessels were smaller in diamater (2-5 µm) and more in numbers. There were granules including amount of melanin pigment at the apical part of the pleats. These granules were fewer and scattered randomly on the basal part of the pleats. As a result, pecten oculi in the stork, which is a migrating bird, were determined to be similar to those of other diurnal birds.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/jemt.22255 | DOI Listing |
Viruses
December 2024
Department of Infectious Diseases and Hepatology, Medical University of Białystok, 15-540 Białystok, Poland.
The SARS-CoV-2 infection manifests with diverse clinical manifestations, with severity potentially influenced by the viral variant. COVID-19 has also been shown to impact ocular microcirculation in some patients, but whether this effect varies by viral lineage remains unclear. This prospective study compared clinical features and ocular parameters assessed via optical coherence tomography angiography (OCTA) in patients recovering from SARS-CoV-2 infections during the dominance of two distinctive viral lineages, Alpha (B.
View Article and Find Full Text PDFBiomolecules
January 2025
Cullen Eye Institute, Department of Ophthalmology, Baylor College of Medicine, Houston, TX 77030, USA.
We developed ligandomics for the in vivo profiling of vascular ligands in mice, discovering secretogranin III (Scg3) as a novel angiogenic factor that selectively binds to retinal vessels of diabetic but not healthy mice. This discovery led to the development of anti-Scg3 therapy for ocular vasculopathies. However, in vivo ligandomics requires intracardial perfusion to remove unbound phage clones, limiting its use to vascular endothelial cells (ECs).
View Article and Find Full Text PDFBiomedicines
January 2025
Perception, Robotics, and Intelligent Machines Lab (PRIME), Department of Computer Science, Université de Moncton, Moncton, NB E1A 3E9, Canada.
Retinal blood vessel segmentation plays an important role in diagnosing retinal diseases such as diabetic retinopathy, glaucoma, and hypertensive retinopathy. Accurate segmentation of blood vessels in retinal images presents a challenging task due to noise, low contrast, and the complex morphology of blood vessel structures. In this study, we propose a novel ensemble learning framework combining four deep learning architectures: U-Net, ResNet50, U-Net with a ResNet50 backbone, and U-Net with a transformer block.
View Article and Find Full Text PDFSci Rep
January 2025
Faculty of Engineering & Information Systems, University of Technology Sydney, Sydney, NSW, 2007, Australia.
Fundus imaging, a technique for recording retinal structural components and anomalies, is essential for observing and identifying ophthalmological diseases. Disorders such as hypertension, glaucoma, and diabetic retinopathy are indicated by structural alterations in the optic disc, blood vessels, fovea, and macula. Patients frequently deal with various ophthalmological conditions in either one or both eyes.
View Article and Find Full Text PDFInvest Ophthalmol Vis Sci
January 2025
Department of Ophthalmology, New York Eye and Ear Infirmary of Mount Sinai, New York, New York, United States.
Purpose: To assess the preferential sites of retinal capillary occlusion at the parafovea in patients with sickle cell disease (SCD) using optical coherence tomography angiography (OCT-A).
Methods: OCT-A scans from 107 patients with SCD and 51 race-matched unaffected controls were obtained using a commercial spectral domain-OCT system. At least eight sequential 3 × 3 mm scans centered at the fovea were acquired and averaged for image analysis.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!