Geological storage of CO2 that has been captured at large, point source emitters represents a key potential method for reduction of anthropogenic greenhouse gas emissions. However, this technology will only be viable if it can be guaranteed that injected CO2 will remain trapped in the subsurface for thousands of years or more. A significant issue for storage security is the geomechanical response of the reservoir. Concerns have been raised that geomechanical deformation induced by CO2 injection will create or reactivate fracture networks in the sealing caprocks, providing a pathway for CO2 leakage. In this paper, we examine three large-scale sites where CO2 is injected at rates of ~1 megatonne/y or more: Sleipner, Weyburn, and In Salah. We compare and contrast the observed geomechanical behavior of each site, with particular focus on the risks to storage security posed by geomechanical deformation. At Sleipner, the large, high-permeability storage aquifer has experienced little pore pressure increase over 15 y of injection, implying little possibility of geomechanical deformation. At Weyburn, 45 y of oil production has depleted pore pressures before increases associated with CO2 injection. The long history of the field has led to complicated, sometimes nonintuitive geomechanical deformation. At In Salah, injection into the water leg of a gas reservoir has increased pore pressures, leading to uplift and substantial microseismic activity. The differences in the geomechanical responses of these sites emphasize the need for systematic geomechanical appraisal before injection in any potential storage site.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3725089PMC
http://dx.doi.org/10.1073/pnas.1302156110DOI Listing

Publication Analysis

Top Keywords

geomechanical deformation
20
deformation induced
8
sleipner weyburn
8
weyburn salah
8
storage security
8
geomechanical
8
co2 injection
8
pore pressures
8
co2
7
storage
6

Similar Publications

This study models the geomechanical deformation of a depleted gas field, wherein gaseous hydrogen is stored in a North Sea reservoir, and is cyclically injected and withdrawn. A fault is modeled within the underburden, and its slip is investigated during a three year storage period. Parametric simulations are conducted to study the influence of the underburden mechanical properties, such as Young's modulus, Poisson's ratio, and permeability on induced seismicity.

View Article and Find Full Text PDF

Rock salt is a potential medium for underground storage of energy resources and radioactive substances due to its physical and mechanical properties, distinguishing it from other rock media. Designing storage facilities that ensure stability, tightness, and safety requires understanding the geomechanical properties of rock salt. Despite numerous research efforts on the behaviour of rock salt mass, many cases still show unfavourable phenomena occurring within it.

View Article and Find Full Text PDF

Injection-production operation parameters, the minimum injection gas pressure (IGP: operation pressure), IGP interval, minimum IGP residence time, and injection-production cycle of the underground salt rock gas storage under long-term operation, affect not only the capacity and working ability of a salt cavern but also be crucial to the safety and stability of the surrounding rock. A 3D geo-mechanical model of the salt cavern is established to study the stability of the storage in the operation period. The deformation, expansion safety factor, volume shrinkage, and plastic zone are comprehensively considered for predicting the feasibility and stability of the salt cavern.

View Article and Find Full Text PDF

Underground mining of minerals is accompanied by a change in the rock mass geomechanical situation. This leads to the redistribution of stresses in it and the occurrence of unexpected displacements and deformations of the earth's surface. A significant part of the civil and industrial infrastructure facilities are located within the mine sites, where mining and tunneling operations are constantly conducted.

View Article and Find Full Text PDF

Natural gas hydrate (NGH) has attracted considerable global attention as a promising energy resource in recent years. To acquire valuable insights into regarding the interplay between mechanical properties and production outcomes during the production, in this study, a fully coupled thermo-hydro-mechanical-chemical (THMC) model based on the geological features of reservoirs in the Shenhu area of the South China Sea (SCS) was developed to analyze the response characteristics of various physical fields within the reservoir during the exploitation. Furthermore, the study examined the influence of mechanical behavior on hydrate exploitation and investigated the effects of varying initial hydrate saturation and seawater depth on production efficiency and reservoir deformation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!