Bacterial resistance to antibiotics poses a great clinical challenge in fighting serious infectious diseases due to complicated resistant mechanisms and time-consuming testing methods. Chemical reaction-directed covalent labeling of resistance-associated bacterial proteins in the context of a complicated environment offers great opportunity for the in-depth understanding of the biological basis conferring drug resistance, and for the development of effective diagnostic approaches. In the present study, three fluorogenic reagents LRBL1-3 for resistant bacteria labeling have been designed and prepared on the basis of fluorescence resonance energy transfer (FRET). The hydrolyzed probes could act as reactive electrophiles to attach the enzyme, β-lactamase, and thus facilitated the covalent labeling of drug resistant bacterial strains. SDS electrophoresis and MALDI-TOF mass spectrometry characterization confirmed that these probes were sensitive and specific to β-lactamase and could therefore serve for covalent and localized fluorescence labeling of the enzyme structure. Moreover, this β-lactamase-induced covalent labeling provides quantitative analysis of the resistant bacterial population (down to 5%) by high resolution flow cytometry, and allows single-cell detection and direct observation of bacterial enzyme activity in resistant pathogenic species. This approach offers great promise for clinical investigations and microbiological research.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/chem.201301654 | DOI Listing |
Sci Rep
January 2025
Department of Pharmaceutical Chemistry, Semmelweis University, Hőgyes Endre U. 9, 1092, Budapest, Hungary.
Microtiter-plate-based systems are unified platforms of high-throughput experimentation (HTE). These polymeric devices are used worldwide on a daily basis-mainly in the pharmaceutical industry-for parallel syntheses, reaction optimization, various preclinical studies and high-throughput screening methods. Accordingly, laboratory automation today aims to handle these commercially available multiwell plates, making developments focused on their modifications a priority area of modern applied research.
View Article and Find Full Text PDFExp Eye Res
January 2025
Department of Ophthalmology, Zhongshan Hospital, Fudan University, Shanghai, China. Electronic address:
The study aimed to compare the effects of different types of excimer laser keratectomy on rabbit corneas and to identify the optimal disease model for corneal ectasia. Additionally, investigating the structural and molecular alterations in the novel disease model helped explore the mechanisms underlying biomechanical cues in corneal ectasia. 2.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT 59717, USA.
Dansyl labeling is a widely used approach for enhancing the detection of small molecules by UV spectroscopy and mass spectrometry. It has been successfully applied to identify and quantify a variety of biological and environmental specimens. Despite clear advantages, the dansylation reaction has found very few applications in the study of proteins.
View Article and Find Full Text PDFBiomedicines
January 2025
Perron Institute for Neurological and Translational Science, Nedlands 6009, Australia.
Background/objectives: The role of α-synuclein (α-syn) pathology in Parkinson's disease (PD) is well established; however, effective therapies remain elusive. Two mechanisms central to PD neurodegeneration are the intracellular aggregation of misfolded α-syn and the uptake of α-syn aggregates into neurons. Cationic arginine-rich peptides (CARPs) are an emerging class of molecule with multiple neuroprotective mechanisms of action, including protein stabilisation.
View Article and Find Full Text PDFAnal Methods
January 2025
Defence Research and Development Establishment, Jhansi Road, Gwalior, Madhya Pradesh 474002, India.
A sandwich electrochemical immunosensor was proposed for the sensitive detection of protective antigen ( PA) toxin based on cadmium sulphide nanocrystals (CdS NCs) and polypyrrole-gold nanoparticle-modified multiwalled carbon nanotubes (PPy-AuNPs/MWCNTs). Herein, PPy-AuNPs/MWCNTs were used as a biocompatible and conducting matrix for immobilization of rabbit anti-PA antibody [RαPA antibody, capturing antibody (Ab1)] and to facilitate excellent electrical conductivity. PPy-AuNPs/MWCNTs were synthesized through a one-step chemical reaction of pyrrole and Au on the surface of MWCNTs.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!