Obesity-associated heart disease results in myocardial lipid accumulation leading to lipotoxicity. However, recent studies are suggestive of protective effects of high-fat diets (HFD). To determine whether age results in differential changes in diet-induced obesity, we fed young and old (3 and 18 months) male C57Bl/6 mice control diet, low-fat diet (both 10 kcal% fat) or HFD (45 kcal% fat) for 16 weeks, after which we analyzed LV function, mitochondrial changes, and potential modifiers of myocardial structure. HFD or age did not change LV systolic function, although a mildly increased BNP was observed in all old mice. This was associated with increased myocardial collagen, triglyceride, diacylglycerol, and ceramide content as well as higher caspase 3 activation in old mice with highest levels in old HFD mice. Pyruvate-dependent respiration and mitochondrial biogenesis were reduced in all old mice and in young HFD mice. Activation of AMPK, a strong inducer of mitochondrial biogenesis, was reduced in both HFD groups and in old control or LFD mice. Cardiomyocytes from old rats demonstrated significantly reduced AMPK activation, impaired mitochondrial biogenesis, higher ceramide content, and reduced viability after palmitate (C16:0) in vitro, while no major deleterious effects were observed in young cardiomyocytes. Aged but not young cardiomyocytes were unable to respond to higher palmitate with increased fatty acid oxidation. Thus, HFD results in cardiac structural alterations and accumulation of lipid intermediates predominantly in old mice, possibly due to the inability of old cardiomyocytes to adapt to high-fatty acid load.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00395-013-0369-6 | DOI Listing |
Mol Cell
January 2025
Department of Microbiology and Molecular Genetics, School of Medicine, University of California, Irvine, Irvine, CA 92697, USA. Electronic address:
Pre-mRNA 3' processing is an integral step in mRNA biogenesis. However, where this process occurs in the nucleus remains unknown. Here, we demonstrate that nuclear speckles (NSs), membraneless organelles enriched with splicing factors, are major sites for pre-mRNA 3' processing in human cells.
View Article and Find Full Text PDFFoods
December 2024
Inventia Biotech-Healthcare Food Research Center s.r.l., Strada Statale Sannitica KM 20.700, 81020 Caserta, Italy.
Adipose tissue, particularly white adipose tissue (WAT), plays a central role in energy storage and metabolic regulation. Excess WAT, especially visceral fat, is strongly linked to metabolic disorders such as obesity and type 2 diabetes. The browning of WAT, whereby white fat cells acquire characteristics of brown adipose tissue (BAT) with enhanced thermogenic capacity, represents a promising strategy to enhance metabolic health.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Department of Physics and Biophysics, Institute of Biology, Warsaw University of Life Sciences, 02-787 Warsaw, Poland.
Plant secondary metabolites (PSMs) are a diverse group of bioactive compounds, including flavonoids, polyphenols, saponins, and terpenoids, which have been recognised for their critical role in modulating cellular functions. This review provides a comprehensive analysis of the effects of PSMs on mitochondrial health, with particular emphasis on their therapeutic potential. Emerging evidence shows that these metabolites improve mitochondrial function by reducing oxidative stress, promoting mitochondrial biogenesis, and regulating key processes such as apoptosis and mitophagy.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Department of Neurology, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
Diabetic peripheral neuropathy (DPN) is a common complication of diabetes in both Type 1 (T1D) and Type 2 (T2D). While there are no specific medications to prevent or treat DPN, certain strategies can help halt its progression. In T1D, maintaining tight glycemic control through insulin therapy can effectively prevent or delay the onset of DPN.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Department of Senior Citizen Service Management, National Taichung University of Science and Technology, Taichung 40343, Taiwan.
A diabetic heart is characterized by fibrosis, autophagy, oxidative stress, and altered mitochondrial functions. For this review, three databases (PubMed, EMBASE, and Web of Science) were searched for articles written in English from September 2023 to April 2024. Studies that used exercise training for at least 3 weeks and which reported positive, negative, or no effects were included.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!