Control over in-channel mesostructure orientation through AAM surface modification.

Phys Chem Chem Phys

Department of Materials Science and Engineering, Technion-Israel Institute of Technology, Haifa 32000, Israel.

Published: August 2013

The synthesis of mesostructured silica from a tetrahydrofuran (THF) based sol-gel was carried out in the channels of an anodic alumina membrane (AAM) using the evaporation induced self-assembly (EISA) method. The effect of channel surface chemistry on the orientation of the in-channel hexagonal mesostructure was studied by treating the channel walls. A variety of channel-surface modifications have been performed, including oxygen plasma treatment, atomic layer deposition (ALD) of pure alumina, and deposition of a hydrophobic monolayer. The in-channel mesostructures were characterized using transmission electron microscopy (TEM) and energy filtered TEM (EFTEM). It was found that these modifications control the concentration of anions at the channel surfaces, and consequently the orientation of the hexagonal mesostructure. Namely, high anion concentration at the channel surface induces the formation of the desired vertically aligned columnar hexagonal phase. A model to understand the effect of anions at the channel wall on the competition between mesostructure phase transformation and silica condensation is proposed. Finally, this study demonstrates that by judiciously modifying the chemistry at the channel walls the formation of desired orientations can be induced.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c3cp52033aDOI Listing

Publication Analysis

Top Keywords

channel surface
8
hexagonal mesostructure
8
channel walls
8
anions channel
8
formation desired
8
channel
6
control in-channel
4
mesostructure
4
in-channel mesostructure
4
mesostructure orientation
4

Similar Publications

Rapid fabrication and dissolution of pressed Ni/Mg matrix targets for Co production.

EJNMMI Radiopharm Chem

January 2025

Department of Nuclear Medicine and Medical Physics, Karolinska University Hospital, Stockholm, 171 76, Sweden.

Background: Beyond the use of conventional short-lived PET radionuclides, there is a growing interest in tracking larger biomolecules and exploring radiotheranostic applications. One promising option for imaging medium-sized molecules and peptides is ⁵⁵Co (T₁/₂ = 17.5 h, β⁺ = 76%), which enables imaging of new and already established tracers with blood circulation of several hours.

View Article and Find Full Text PDF

Triple-attentions based salient object detector for strip steel surface defects.

Sci Rep

January 2025

School of Computer and Information Technology, Xinyang Normal University, Xinyang, Henan Province, 464000, P. R. China.

Accurate detection of surface defects on strip steel is essential for ensuring strip steel product quality. Existing deep learning based detectors for strip steel surface defects typically strive to iteratively refine and integrate the coarse outputs of the backbone network, enhancing the models' ability to express defect characteristics. Attention mechanisms including spatial attention, channel attention and self-attention are among the most prevalent techniques for feature extraction and fusion.

View Article and Find Full Text PDF

3D printable and myoelectrically sensitive hydrogel for smart prosthetic hand control.

Microsyst Nanoeng

January 2025

Shien-Ming Wu School of Intelligent Engineering, South China University of Technology, Guangzhou, 511442, P. R. China.

Surface electromyogram (sEMG) serves as a means to discern human movement intentions, achieved by applying epidermal electrodes to specific body regions. However, it is difficult to obtain high-fidelity sEMG recordings in areas with intricate curved surfaces, such as the body, because regular sEMG electrodes have stiff structures. In this study, we developed myoelectrically sensitive hydrogels via 3D printing and integrated them into a stretchable, flexible, and high-density sEMG electrodes array.

View Article and Find Full Text PDF

Molecular electronics represent the cutting-edge and interdisciplinary effort on the future miniaturization of electronic circuits. Benefiting from synthetic chemistry and theoretical insights, molecular circuit studies have promoted devices with increasingly complicated structures. Especially, the evolution of conductive backbones from simple chain-shape single-channel configurations to complex multi-channel architectures marks a pivotal progression.

View Article and Find Full Text PDF

Photo-induced multiple charge transfer resonance of Ce-MOF for SERS detection of nucleic acid.

Anal Chim Acta

February 2025

Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University) Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, PR China. Electronic address:

Background: Sensitive and accurate detection of important cancer markers MicroRNAs (miRNAs) is critical to prevent and treat disease. Among many detection techniques, surface-enhanced Raman scattering(SERS) has attracted much attention due to its advantages such as narrow spectral peak, low interference and non-destructive detection. Interestingly, non-noble metal SERS substrates show good prospects due to their outstanding spectral reproducibility and biocompatibility.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!