It has been established that Ca(V)3.2 T-type voltage-gated calcium channels (T-channels) play a key role in the sensitized (hyperexcitable) state of nociceptive sensory neurons (nociceptors) in response to hyperglycemia associated with diabetes, which in turn can be a basis for painful symptoms of peripheral diabetic neuropathy (PDN). Unfortunately, current treatment for painful PDN has been limited by nonspecific systemic drugs with significant side effects or potential for abuse. We studied in vitro and in vivo mechanisms of plasticity of Ca(V)3.2 T-channel in a leptin-deficient (ob/ob) mouse model of PDN. We demonstrate that posttranslational glycosylation of specific extracellular asparagine residues in Ca(V)3.2 channels accelerates current kinetics, increases current density, and augments channel membrane expression. Importantly, deglycosylation treatment with neuraminidase inhibits native T-currents in nociceptors and in so doing completely and selectively reverses hyperalgesia in diabetic ob/ob mice without altering baseline pain responses in healthy mice. Our study describes a new mechanism for the regulation of Ca(V)3.2 activity and suggests that modulating the glycosylation state of T-channels in nociceptors may provide a way to suppress peripheral sensitization. Understanding the details of this regulatory pathway could facilitate the development of novel specific therapies for the treatment of painful PDN.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3806612PMC
http://dx.doi.org/10.2337/db13-0813DOI Listing

Publication Analysis

Top Keywords

cav32 t-type
8
calcium channels
8
treatment painful
8
painful pdn
8
cav32
5
reversal neuropathic
4
neuropathic pain
4
pain diabetes
4
diabetes targeting
4
targeting glycosylation
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!