The morphological and settling properties of ANAMMOX granular sludge in high-rate reactors.

Bioresour Technol

Department of Environmental Engineering, Zhejiang University, Hangzhou 310058, China.

Published: September 2013

Digital macro photography and settling tests were carried out to investigate the morphological and settling characteristics of ANAMMOX granules in a high-rate reactor. The ANAMMOX granules could be divided into settling and floating granules. The settling granules with an average diameter of 2.96±0.99 mm were smaller than the floating granules with an average diameter of 4.58±1.22 mm. A settling model was established and validated to correlate the settling velocity with the density (ρG), mass shape factor (ψmass), shape-correction factor (characterized by sphericity (Φ(')) or roundness (ξ)) and projected area equivalent sphere diameter (dP) of ANAMMOX granules. The sphericity was more suitable than the roundness for describing the settling behavior. The sensitivity of four parameters was in the order of ρG,ψmass, dP and Φ('). Based on the settling model, ANAMMOX granules with diameter of 1.75-4.00 mm were supposed to be optimal for the ANAMMOX process.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biortech.2013.06.046DOI Listing

Publication Analysis

Top Keywords

anammox granules
16
morphological settling
8
settling
8
floating granules
8
granules average
8
average diameter
8
settling model
8
granules
7
anammox
6
settling properties
4

Similar Publications

Comprehensive performance of a new-type hybrid membrane bioreactor applied to mainstream anammox process.

J Environ Manage

December 2024

Institute of Pollution Control and Environmental Health, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin, 300401, China.

The new-type submerged granular sludge membrane bioreactor (S-GSMBR) was constructed by installing a membrane module inside an upflow anaerobic sludge blanket. S-GSMBR achieved the fast start-up (47 d) and long-term stable operation (133 d) of mainstream Anammox process as well as the effective control of membrane fouling. The maximum nitrogen removal rate and efficiency were 0.

View Article and Find Full Text PDF

Effects of granule disintegration and re-granulation on the physiological characteristics and microbial diversity of anammox granules.

Chemosphere

December 2024

Department of Environmental & IT Convergence Engineering, Chungnam National University, Daehak-ro 99, Yuseong-gu, Daejeon, South Korea. Electronic address:

The impact of artificial disintegration and re-granulation of anammox granules on the granule size, Extra-cellular Polymeric Substances (EPS) composition, microbial community characteristics, and the performance of the anammox process was investigated. Before the granule disintegration, the Dv50 and Granulation Index (GI) were 1280 μm and 54.62%, respectively.

View Article and Find Full Text PDF

Effective organic matter removal via bio-adsorption prior to anammox process and utilization of carbon-rich sludge.

J Environ Manage

December 2024

Key Laboratory of Urban Storm Water System and Water Environment Ministry of Education, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China; Sino-Dutch R&D Centre for Future Wastewater Treatment Technologies/Key Laboratory of Urban Stormwater System and Water Environment, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China.

Excessive organic matter in the anaerobic ammonia oxidation (Anammox) leads to the growth of a large number of heterotrophic bacteria, which disrupts the anaerobic ammonia oxidation. The adsorption-anaerobic ammonia oxidation process can effectively reduce excessive organic matter, capturing it instead of consuming it, which is a sustainable development technology. In this study, utilizing the excellent adsorption performance of aerobic granular sludge (AGS), an adsorption-regeneration process was employed to remove organic matter at the front end of the Anammox process through bio-adsorption in an artificial simulated domestic sewage environment, and it was successfully used for denitrification.

View Article and Find Full Text PDF

N-(1,3-Dimethylbutyl)-N'-phenyl-p-phenylenediamine (6PPD) is an antioxidant commonly used in tire manufacturing, and its release into the environment has significantly increased due to rapid urbanization. When subjected to ozonation, 6PPD converts into the harmful pollutant 6PPD quinone (6PPDQ). These substances enter wastewater treatment plants (WWTPs) via stormwater runoff and pipelines, posing significant risks to the functional microorganisms.

View Article and Find Full Text PDF
Article Synopsis
  • The anammox process is an efficient method for removing nitrogen from wastewater, but its application is limited due to slow bacteria growth and sludge flotation.
  • This study explored two methods—Mg adsorption and magnesium ammonium phosphate (MAP) precipitation—to enhance anammox bacteria granulation, with Mg boosting specific anammox activity significantly more than MAP.
  • While both methods showed similar nitrogen removal efficiency, MAP helped reduce sludge flotation, making it an effective option for practical applications despite some drawbacks in bacteria performance.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!