Two bacterial strains, Pseudomonas aeruginosa MJK1 and Escherichia coli MJK2, were constructed that both express green fluorescent protein (GFP) and carry out ureolysis. These two novel model organisms are useful for studying bacterial carbonate mineral precipitation processes and specifically ureolysis-driven microbially induced calcium carbonate precipitation (MICP). The strains were constructed by adding plasmid-borne urease genes (ureABC, ureD and ureFG) to the strains P. aeruginosa AH298 and E. coli AF504gfp, both of which already carried unstable GFP derivatives. The ureolytic activities of the two new strains were compared to the common, non-GFP expressing, model organism Sporosarcina pasteurii in planktonic culture under standard laboratory growth conditions. It was found that the engineered strains exhibited a lower ureolysis rate per cell but were able to grow faster and to a higher population density under the conditions of this study. Both engineered strains were successfully grown as biofilms in capillary flow cell reactors and ureolysis-induced calcium carbonate mineral precipitation was observed microscopically. The undisturbed spatiotemporal distribution of biomass and calcium carbonate minerals were successfully resolved in 3D using confocal laser scanning microscopy. Observations of this nature were not possible previously because no obligate urease producer that expresses GFP had been available. Future observations using these organisms will allow researchers to further improve engineered application of MICP as well as study natural mineralization processes in model systems.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.mimet.2013.06.028 | DOI Listing |
Proc Natl Acad Sci U S A
February 2025
Department of Earth System Sciences, Center for Earth System Research and Sustainability, University of Hamburg, Hamburg 20146, Germany.
As an essential micronutrient, phosphorus plays a key role in oceanic biogeochemistry, with its cycling intimately connected to the global carbon cycle and climate change. Authigenic carbonate fluorapatite (CFA) has been suggested to represent a significant phosphorus sink in the deep ocean, but its formation mechanisms in oceanic low-productivity settings remain poorly constrained. Applying X-ray absorption near edge structure, transmission electron microscopy, and laser ablation inductively coupled plasma mass spectrometer analyses, we report a unique mineral assemblage where CFA crystals coat phillipsite in abyssal sediments of the East Mariana Basin and the Philippine Sea.
View Article and Find Full Text PDFSci Total Environ
January 2025
Department of Earth Resources & Environmental Engineering, Hanyang University, Seoul 04763, Republic of Korea. Electronic address:
Concentrated animal feeding operation facility in modern livestock industry is pointed out as a point site causing environmental pollution due to massive generation of manure. While livestock manure is conventionally treated through biological processes, composting and anaerobic digestion, these practices pose difficulties in achieving efficient carbon utilization. To address this, this study suggests a pyrolytic valorization of livestock manure, with a focus on enhancing syngas production.
View Article and Find Full Text PDFJ Autoimmun
January 2025
Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China; Hunan Key Laboratory of Aging Biology, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China. Electronic address:
Although exposure to hard water is associated with various inflammatory skin conditions, the specific relationship between hard water and psoriasis has not been clearly defined. We analyzed data from 486,414 participants in the UK Biobank cohort to explore the association between domestic hard water exposure and the incidence of psoriasis. Domestic water hardness, measured in calcium carbonate concentration, was obtained in 2005 from local water providers in Wales, Scotland, and England.
View Article and Find Full Text PDFNutrients
January 2025
Graduate School of Bioscience and Biotechnology, Chubu University, 1200, Matsumoto-cho, Kasugai-city 487-8501, Aichi, Japan.
Background/objectives: Facial bone density, including the jawbone, declines earlier than that of the lumbar spine and calcaneus. Calcium maltobionate is reported to mitigate bone resorption and maintain bone density of the lumbar spine in post-menopausal women, but its effects on facial bone density remain understudied. Therefore, this study compared variations in facial bone mineral density with variations in calcaneal bone mineral density and bone resorption markers among healthy women, examining differences between pre- and post-menopause and the effects of continuous calcium maltobionate intake.
View Article and Find Full Text PDFPolymers (Basel)
January 2025
Materials Engineering and Welding Department, Transilvania University of Brasov, 500036 Brasov, Romania.
This review explores the impact of various additives on the mechanical properties of polylactic acid (PLA) filaments used in Fused Deposition Modeling (FDM) 3D printing. While PLA is favored for its biodegradability and ease of use, its inherent limitations in strength and heat resistance necessitate enhancements through additives. The impact of natural and synthetic fibers, inorganic particles, and nanomaterials on the mechanical properties, printability, and overall functionality of PLA composites was examined, indicating that fiber reinforcements, such as carbon and glass fibers, significantly enhance tensile strength and stiffness, while natural fibers contribute to sustainability but may compromise mechanical stability.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!