A novel allosteric inhibitor of the uridine diphosphate N-acetylglucosamine pyrophosphorylase from Trypanosoma brucei.

ACS Chem Biol

Division of Biological Chemistry and Drug Discovery, ‡Division of Molecular Microbiology, and §MRC Protein Phosphorylation and Ubiquitylation Unit, College of Life Sciences, University of Dundee, Dundee DD1 5EH, U.K.

Published: September 2013

Uridine diphosphate N-acetylglucosamine pyrophosphorylase (UAP) catalyzes the final reaction in the biosynthesis of UDP-GlcNAc, an essential metabolite in many organisms including Trypanosoma brucei, the etiological agent of Human African Trypanosomiasis. High-throughput screening of recombinant T. brucei UAP identified a UTP-competitive inhibitor with selectivity over the human counterpart despite the high level of conservation of active site residues. Biophysical characterization of the UAP enzyme kinetics revealed that the human and trypanosome enzymes both display a strictly ordered bi-bi mechanism, but with the order of substrate binding reversed. Structural characterization of the T. brucei UAP-inhibitor complex revealed that the inhibitor binds at an allosteric site absent in the human homologue that prevents the conformational rearrangement required to bind UTP. The identification of a selective inhibitory allosteric binding site in the parasite enzyme has therapeutic potential.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3780468PMC
http://dx.doi.org/10.1021/cb400411xDOI Listing

Publication Analysis

Top Keywords

uridine diphosphate
8
diphosphate n-acetylglucosamine
8
n-acetylglucosamine pyrophosphorylase
8
trypanosoma brucei
8
novel allosteric
4
allosteric inhibitor
4
inhibitor uridine
4
pyrophosphorylase trypanosoma
4
brucei
4
brucei uridine
4

Similar Publications

[Precision Medicine for Patients with Renal Cell Carcinoma Based on Drug-metabolizing Enzyme Expression Levels].

Yakugaku Zasshi

January 2025

Department of Personalized Medicine and Preventive Healthcare Sciences, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University.

Notable advances have recently been achieved in drug therapies for renal cell carcinoma (RCC). Several tyrosine kinase inhibitors (TKIs) and immune checkpoint inhibitors (ICIs) have been approved for metastatic RCC (mRCC). The current first-line treatment for mRCC involves combination therapies using TKIs and ICIs.

View Article and Find Full Text PDF

Genome-wide identification and expression patterns of uridine diphosphate (UDP)-glycosyltransferase genes in the brown planthopper, Nilaparvata lugens.

Comp Biochem Physiol Part D Genomics Proteomics

December 2024

Key Laboratory of Plant Genetics and Molecular Breeding, Zhoukou Normal University, Zhoukou 466001, China; Henan Key Laboratory of Crop Molecular Breeding & Bioreactor, Zhoukou 466001, China. Electronic address:

Uridine diphosphate-glycosyltransferases (UGTs) are responsible for glycosylation by combining various small lipophilic molecules with sugars to produce water-soluble glycosides, which are crucial for the metabolism of plant secondary metabolites and detoxification in insects. This study presents a genome-wide analysis of the UGT gene family in the brown planthopper, Nilaparvata lugens, a destructive insect pest of rice in Asia. Based on the similarity to UGT homologs from other organisms, 20 putative NlUGT genes were identified in N.

View Article and Find Full Text PDF

Engineering glycolytic pathway for improved Lacto-N-neotetraose production in pichia pastoris.

Enzyme Microb Technol

December 2024

Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China; Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 310027, China. Electronic address:

Lacto-N-neotetraose (LNnT) is a primary solid component of human milk oligosaccharides (HMOs) with various promising health effects for infants. LNnT production by GRAS (generally recognized as safe) microorganisms has attracted considerable attention. However, few studies have emphasized Pichia Pastoris as a cell factory for LNnT's production.

View Article and Find Full Text PDF

The glial UDP-glycosyltransferase Ugt35b regulates longevity by maintaining lipid homeostasis in Drosophila.

Cell Rep

December 2024

Department of Critical Care Medicine and Neurosurgery of Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai 200032, China. Electronic address:

Lipid droplets (LDs) are dynamic organelles essential for lipid storage and organismal survival. Studies have highlighted the importance of glial function in brain LD formation during aging; however, the genes and mechanisms involved remain elusive. Here, we found that Ugt35b, a member of the uridine diphosphate (UDP)-glycosyltransferases that catalyze the transfer of glycosyl groups to acceptors, is highly expressed in glia and crucial for Drosophila lifespan.

View Article and Find Full Text PDF

Synergistic and Additive Inhibition of UDP-Glucuronosyltransferase 1A9 by Endogenous and Foodborne Inhibitors.

Basic Clin Pharmacol Toxicol

January 2025

Collaborative Innovation Center of Targeted Development of Medicinal Resources (iCTM) & Research Center of Aquatic Organism Conservation and Water Ecosystem Restoration, Anqing Normal University, Anqing, China.

UDP-glucuronosyltransferases (UGTs) are responsible for inactivation of a variety of drugs, endogenous hormones and environmental toxicants. Chemical inhibitors are a common factor decreasing UGT activities and furtherly inducing health problems. Although simultaneously encountering different inhibitors is readily to occur, no information is available for combined inhibition of UGT.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!