Structure-activity relationships in non-ligand binding pocket (non-LBP) diarylhydrazide antiandrogens.

J Chem Inf Model

Molecular Design Group, School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland.

Published: August 2013

We report the synthesis and a study of the structure-activity relationships of a new series of diarylhydrazides as potential selective non-ligand binding pocket androgen receptor antagonists. Their biological activity as antiandrogens in the context of the development of treatments for castration resistant prostate cancer was evaluated using in vitro time resolved fluorescence resonance energy transfer and fluorescence polarization on target assays. Additionally, a theoretical study combining docking and molecular dynamics methods was performed to provide insight into their mechanism of action as a basis for further lead optimization studies.

Download full-text PDF

Source
http://dx.doi.org/10.1021/ci400189mDOI Listing

Publication Analysis

Top Keywords

structure-activity relationships
8
non-ligand binding
8
binding pocket
8
relationships non-ligand
4
pocket non-lbp
4
non-lbp diarylhydrazide
4
diarylhydrazide antiandrogens
4
antiandrogens report
4
report synthesis
4
synthesis study
4

Similar Publications

Improving Molecular Design with Direct Inverse Analysis of QSAR/QSPR Model.

Mol Inform

January 2025

Department of Applied Chemistry, School of Science and Technology, Meiji University, 1-1-1 Higashi-Mita, Tama-ku, Kawasaki, Kanagawa 214-8571, Japan.

Recent advances in machine learning have significantly impacted molecular design, notably the molecular generation method combining the chemical variational autoencoder (VAE) with Gaussian mixture regression (GMR). In this method, a mathematical model is constructed with X as the latent variable of the molecule and Y as the target properties and activities. Through direct inverse analysis of this model, it is possible to generate molecules with the desired target properties.

View Article and Find Full Text PDF

Roadmap to discovery and early development of an mRNA loaded LNP formulation for liver therapeutic genome editing.

Expert Opin Drug Deliv

January 2025

Advanced Drug Delivery, Pharmaceutical Sciences, R&D, AstraZeneca, Macclesfield, UK.

Introduction: mRNA therapeutics were a niche area in drug development before COVIDvaccines. Now they are used in vaccine development, for non-viral therapeuticgenome editing, chimericantigen receptor T  (CAR T) celltherapies and protein replacement.  mRNAis large, charged, and easily degraded by nucleases.

View Article and Find Full Text PDF

Alzheimer's disease (AD) prevention is a critical challenge for aging societies, necessitating the exploration of food ingredients and whole foods as potential therapeutic agents. This study aimed to identify natural compounds (NCs) with therapeutic potential in AD using an innovative bioinformatics-integrated deep neural analysis approach, combining computational predictions with molecular docking and in vitro experiments for comprehensive evaluation. We employed the bioinformatics-integrated deep neural analysis of NCs for Disease Discovery (BioDeepNat) application in the data collected from chemical databases.

View Article and Find Full Text PDF

The synthetic approach based on a sequence of Buchwald-Hartwig cross-coupling and annulation through intramolecular oxidative cyclodehydrogenation has been used for the construction of novel 4-alkyl-4-thieno[2',3':4,5]pyrrolo[2,3-]quinoxaline derivatives. For the first time, these polycyclic compounds were evaluated for antimycobacterial activity, including extensively drug-resistant strains. A reasonable bacteriostatic effect against HRv was demonstrated.

View Article and Find Full Text PDF

The use of the concept of privileged structures significantly accelerates the search for new leads and their optimization. 6-(methylsulfonyl)-8-(4-methyl-4-1,2,4-triazol-3-yl)-2-(5-nitro-2-furoyl)-2,6-diazaspiro[3.4]octane has been identified as a lead, with MICs of 0.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!