Licofelone abolishes survival of carcinogenic fibroblasts by inducing apoptosis.

Drug Chem Toxicol

Department of Physiology, Faculty of Medicine, Eskisehir Osmangazi University, Eskisehir , Turkey .

Published: January 2014

Dual inhibitors of cyclooxygenase (COX) and lipoxygenase (LOX) pathways of arachidonic acid metabolism prevent cancer development and induce apoptosis. One of the most promising compounds that blocks both of these pathways is licofelone. We questioned whether licofelone affects the survival and/or promotes apoptosis of H-ras transformed rat embryonic fibroblast (5RP7) cells in vitro. Using 5-fluorouracil (5-FU) and colchicine as positive controls, we determined cell viability with 3-3-(4,5-D-methylthiazol-2-yl)-2,5-diphenyltetrazolium bromide, thyazolyl blue (MTT), apoptosis with flow cytometry and activity of caspase enzyme with real-time reverse transcription polymerase chain reaction (PCR). Compared to the control, all used six doses (10, 50, 100, 150, 250 and 250 µM) of 5-FU, colchicine and licofelone, which were cytotoxic and reduced the number of H-Ras transformed 5RP7 cells by as much as 78, 72 and 92%, respectively. In addition, we found that 150, 200 and 250 µM of licofelone induced apoptosis and necrosis of H-Ras transformed 5RP7 cells in a dose- and time-dependent manner. Each three tested drugs at 250 µM also increased the level of caspase-3 enzyme up to 5-fold. Although colchicine was effective in inducing early apoptosis, licofelone had much more capacity to induce the total of early plus late apoptosis by approximately 96% in cells after 48 hours. The present study reveals the possibility that licofelone posseses strong dose- and time-dependent anticancer and apoptotic properties on carcinogenic fibroblasts.

Download full-text PDF

Source
http://dx.doi.org/10.3109/01480545.2013.806525DOI Listing

Publication Analysis

Top Keywords

h-ras transformed
12
5rp7 cells
12
carcinogenic fibroblasts
8
5-fu colchicine
8
transformed 5rp7
8
dose- time-dependent
8
licofelone
7
apoptosis
7
licofelone abolishes
4
abolishes survival
4

Similar Publications

Tumor-mimetic hydrogel stiffness regulates cancer stemness properties in H-Ras-transformed cancer model cells.

Biochem Biophys Res Commun

January 2025

Graduate School of Life Science, Hokkaido University, N21 W11, Kita-ku, Sapporo, 001-0021, Japan; Department of Cancer Pathology, Faculty of Medicine, Hokkaido University, N15 W7, Kita-ku, Sapporo, 060-8638, Japan; Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, N21 W10, Kita-ku, Sapporo, 001-0021, Japan. Electronic address:

Article Synopsis
  • Cancer stem cells (CSCs) contribute to therapy resistance and cancer recurrence, making it essential to develop treatment strategies that specifically target CSCs.
  • Previous research showed that glioblastoma cells can be transformed into CSCs when cultured on double-network hydrogels, simulating tumor stiffness.
  • In this study, H-Ras-transformed fibroblasts cultured on a hydrogel with 10 kPa stiffness exhibited increased expression of stemness markers, suggesting that the stiffness of tumor tissues plays a crucial role in the generation of CSCs through certain cellular mechanisms.
View Article and Find Full Text PDF

Accumulating evidence suggests that caspase-3 plays critical roles beyond apoptosis, serving pro-survival functions in malignant transformation and tumorigenesis. However, the mechanism of non-apoptotic action of caspase-3 in oncogenic transformation remains unclear. In the present study, we show that caspase-3 is consistently activated in malignant transformation induced by exogenous expression of oncogenic cocktail (c-Myc, p53DD, Oct-4, and H-Ras) in vitro as well as in the mouse mammary tumor virus-polyomavirus middle T antigen (MMTV-PyMT) mouse model of breast cancer.

View Article and Find Full Text PDF

The loss of RAB25 expression-RAS superfamily of GTPase characteristic of numerous breast cancers-corresponds with H-RAS point mutations, particularly in triple-negative breast cancers (TNBC), a subtype associated with a poor prognosis. To address the poorly understood factors dictating the progression of TNBC tumors, we examine the cooperative effects that loss of RAB25 expression in human mammary epithelial cell (HMEC) lines with H-RAS mutations confers in tumorigenesis. HMECs were immortalized by transduction with LXSN CDK4 R24C, a mutant form of cyclin-dependent kinase, followed by transduction with hTERT, a catalytic subunit of the telomerase enzyme.

View Article and Find Full Text PDF

The risk of aberrant growth of induced pluripotent stem cell (iPSC)-derived cells in response to DNA damage is a potential concern as the tumor suppressor genes TP53 and CDKN2A are transiently inactivated during reprogramming. Herein, we evaluate the integrity of cellular senescence pathways and DNA double-strand break (DSB) repair in Sendai virus reprogrammed iPSC-derived human fibroblasts (i-HF) compared to their parental skin fibroblasts (HF). Using transcriptomics analysis and a variety of functional assays, we show that the capacity of i-HF to enter senescence and repair DSB is not compromised after damage induced by ionizing radiation (IR) or the overexpression of H-RAS.

View Article and Find Full Text PDF

Evaluating the sensitivity of newborn rats and newborn hamsters to oncogenic DNA.

Biologicals

November 2023

Division of Viral Products, Office of Vaccines Research and Review, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD, 20993, USA. Electronic address:

To evaluate the risk of residual cellular DNA in vaccines manufactured in tumorigenic cell lines, we have been establishing in vivo assays to quantify the oncogenic activity of DNA. We had generated three oncogene-expression plasmids: pMSV-T24-H-ras, which expresses activated H-ras; pMSV-c-myc, which expresses c-myc; and pMSV-T24-H-ras/MSV-c-myc, which expresses both oncogenes. Tumors were induced in mice by pMSV-T24-H-ras plus pMSV-c-myc or by pMSV-T24-H-ras/MSV-c-myc.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!