Ultraflat gold surfaces with coplanar, embedded titanium micropatterns, exhibiting extremely low roughness over the entire surface, have been obtained by a modified template-stripping procedure. Titanium is deposited onto photolithographically predefined regions of a silicon template. Following photoresist lift-off, the entire surface is backfilled with gold, template stripping is conducted, and an ultraflat micropatterned surface is revealed. Atomic force microscopy confirms a roughness of <0.5 nm RMS on both Ti and Au regions, with a topographically indistinguishable gold-titanium interface. Detailed surface-chemical maps of the patterned surfaces have been obtained by means of imaging X-ray photoelectron spectroscopy (i-XPS) as well as time-of-flight secondary-ion mass spectrometry (ToF-SIMS). They confirm the presence of well-separated Ti and Au regions, with a chemical contrast that is sharp (as determined by ToF-SIMS) and complete (as determined by i-XPS) across the Ti-Au interface. Thus, a surface has been fabricated that is physically homogeneous down to the nanoscale incorporating chemically distinct micropatterns consisting of two different metals, with totally contrasting surface chemistries.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/la401364e | DOI Listing |
Langmuir
December 2023
Department of Physical Chemistry II, University of Bayreuth, Universitaetsstrasse 30, 95447 Bayreuth, Germany.
The controlled electrochemical deposition of hydrogels from low-molecular weight hydrogelators (LMWHGs) allows for the defined formation of thin films on electrodes. Here, the deposition of fibrillar networks consisting of ,',″-tris(4-carboxyphenylene)-1,3,5-benzenetricarboxamide (BTA) onto ultraflat gold electrodes has been studied. This process, also termed electrogelation, is based on a local change in the pH due to electrolysis of water at the electrode.
View Article and Find Full Text PDFACS Nano
November 2023
Department of Electrical Engineering, Stanford University, Stanford, California 94305, United States.
Nanoscale
June 2023
Institute for Electronics Microelectronics and Nanotechnology (IEMN), CNRS, University of Lille, Av. Poincaré, Villeneuve d'Ascq, France.
Polyoxometalates are nanoscale molecular oxides with promising properties that are currently explored for molecule-based memory devices. In this work, we synthesize a series of Preyssler polyoxometalates (POMs), [Na⊂PWO], stabilized with four different counterions, H, K, NH, and tetrabutylammonium (TBA). We study the electron transport properties at the nanoscale (conductive atomic force microscopy, C-AFM) of molecular junctions formed by self-assembled monolayers (SAMs) of POMs electrostatically deposited on the ultraflat gold surface prefunctionalized with a positively charged SAM of amine-terminated alkylthiol chains.
View Article and Find Full Text PDFLangmuir
March 2022
Aix Marseille University, CNRS, Université de Toulon, IM2NP, UMR 7334, F-13397 Marseille, France.
This work describes the self-assembled monolayers (SAMs) of two ferrocene derivatives with two anchoring groups (at the bottom and at the top of the SAM) deposited on ultraflat template-stripped gold substrates by cyclic voltammetry and analyzed by complementary surface characterization techniques. The SAM of each molecule is deposited by three different protocols: direct deposition (one step), click reaction on the surface (two steps), and reverse click reaction on the surface (two steps). The SAM structure is well studied to determine the SAM orientation, SAM arrangement, and ferrocene position within the SAM.
View Article and Find Full Text PDFACS Appl Mater Interfaces
July 2021
CNR-IMM, Strada VIII, 5 95121, Catania, Italy.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!