[Depressed cardiac output at higher pacing rate in isolated working heart of rat].

Zhongguo Ying Yong Sheng Li Xue Za Zhi

Department of Aerospace Physiology, the Fourth Military Medical University, Xi'an 710032.

Published: March 2013

Objective: To observe the regulation of heart rate to cardiac pump function in the phase of negative force-frequency relationship and their possible mechanisms.

Methods: The left ventricular pressure, aortic pressure, and cardiac output were measured in isolated working heart of rat from 240 to 300 beats/min of pacing rate.

Results: Cardiac output of isolated working heart was decreased by a proximally 20% (P < 0.01) with the increase in the pacing rate from 240 to 300 beats/min. Left ventricular end-systolic pressure (LVESP) was declined by 4.8% (P < 0.05), but left ventricular end-diastolic pressure (LVEDP) was elevated by 139% (P < 0.01) with an increase in the pacing rate. Left atrium was enlarged at 300 beats/min of pacing rate. The time from peak to 75% relaxation in left ventricular pressure was shortened with the increased pacing rate. Pressure at aortic valve close was raised (P < 0.01) and ejection duration was shortened with the increased pacing rate (P < 0.01).

Conclusion: Those above results suggest that there are different mechanisms between the depressed cardiac output at higher heart rate and negative force-frequency relationship. The frequency-dependent acceleration of relaxation facilitates the decline of left ventricular pressure, and then may elevate the pressure of aortic valve close in the condition that the shape of aortic pressure curve stays the same. Therefore, the ejection duration is shortened at higher pacing rate. The shortened ejection duration may induce a decrease in stroke volume of the left ventricle. The increment of heart rate is not enough to compensate the decreased stroke volume. Finally, cardiac output shows a decrease at higher heart rate.

Download full-text PDF

Source

Publication Analysis

Top Keywords

pacing rate
28
cardiac output
20
left ventricular
20
heart rate
16
isolated working
12
working heart
12
ventricular pressure
12
pressure aortic
12
300 beats/min
12
ejection duration
12

Similar Publications

Introduction: Ultrasound (US)-guided axillary vein puncture is a safe and effective approach for cardiac implantable electronic device (CIED) implantation, and it is highly recommended by the current consensus document. However, only reports on small populations are available in the current literature regarding the comparison of this technique with other traditional approaches (subclavian vein blind puncture and cephalic vein surgical cutdown).

Purpose: We aimed to assess the effectiveness and safety of US- guided axillary vein puncture using a microintroducer kit for CIED implantation as compared to the aforementioned traditional approaches.

View Article and Find Full Text PDF

Comparative Effects of Kapalbhati and Slow Deep Breathing on Heart Rate Variability: Mechanistic Insights into Sympathetic and Parasympathetic Dominance.

Mymensingh Med J

January 2025

Professor Dr Varun Malhotra, Additional Professor, Department of Physiology, AIIMS Bhopal, India; E-mail:

The autonomic nervous system governs rhythmic fluctuations in blood pressure and heart rate, which are influenced by breathing patterns. This study aims to explore how different breathing techniques, specifically Kapalbhati (fast-paced breathing) and Slow Deep Breathing (SDB), affect heart rate variability (HRV). This study was conducted in the Department of Physiology and AYUSH at AIIMS Bhopal, India and duration was 2 (Two) months from May 2021 to June 2021 This quasi-experimental study involved 60 participants divided into two groups: Kapalbhati and SDB.

View Article and Find Full Text PDF

Minimizing for Maximum Benefit: An Illustrative Case-Series of Atrial Only Leadless Pacing.

Pacing Clin Electrophysiol

December 2024

Division of Cardiology, Department of Medicine, Weill Cornell Medicine, New York Presbyterian Hospital, New York, USA.

Leadless pacing technology now includesdedicated atrial helix-fixation leadless pacemakers (LPs), expanding theapplication of leadless devices for patients with sinus node dysfunction andatrioventricular block during sinus rhythm. This first reportedcase-series of atrial LPs describes and discusses the potential use-casescenarios of recently approved helix-fixation atrial LPs. The article highlights important concepts regarding their use, including implantationtechniques, programming, battery conservation, and the low rate of progressionof AV block in patients implanted with AAI(R) pacemakers.

View Article and Find Full Text PDF

Background: Cryoballoon ablation has been widely performed in patients with paroxysmal atrial fibrillation (AF). In some challenging pulmonary veins (PVs), the procedure requires additional touch-up applications against the residual conduction gaps. It implies that there could exist difficult sites to cover with standard cryoballoon applications (CBAs), resulting in resistant conduction gaps (RCGs).

View Article and Find Full Text PDF
Article Synopsis
  • Cardiac resynchronization therapy (CRT) improves functional mitral regurgitation (FMR) by coordinating heart muscle segments, especially between papillary muscles, beyond just boosting left ventricular (LV) performance.
  • Eighteen patients with dilated cardiomyopathy underwent tests to measure heart function, and biventricular pacing showed a significant reduction in mitral regurgitation despite some patients showing no change in LV pressure.
  • The study concludes that CRT effectively lowers FMR independently of LV systolic function improvements, highlighting the importance of understanding its mechanisms for better treatment outcomes.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!