Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Diapause has long been recognized as a crucial ecological adaptation to spatio-temporal environmental variation. More recently, rapid evolution of the diapause response has been implicated in response to contemporary global warming and during the range expansion of invasive species. Although the molecular regulation of diapause remains largely unresolved, rapidly emerging next-generation sequencing (NGS) technologies provide exciting opportunities to address this longstanding question. Herein, a new assembly from life-history stages relevant to diapause in the Asian tiger mosquito, (Skuse) is presented, along with unique methods for the analysis of NGS data and transcriptome assembly. A digital normalization procedure that significantly reduces computational resources required for transcriptome assembly is evaluated. Additionally, a method for protein reference-based and genomic reference-based merged assembly of 454 and Illumina reads is described. Finally, a gene ontology analysis is presented, which creates a platform to identify physiological processes associated with diapause. Taken together, these methods provide valuable tools for analyzing the transcriptional underpinnings of many complex phenotypes, including diapause, and provide a basis for determining the molecular regulation of diapause in .
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3700550 | PMC |
http://dx.doi.org/10.1111/phen.12016 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!