Purpose: Results of previous studies on the benefits of ocular drug delivery using polymeric mucoadhesive nanoparticles suggested longer presence and better penetration of nanoparticles, and, thus, increased effect and bioavailability of drugs entrapped in nanoparticles. In this study, a novel polymer, poly β-amino ester, was used for the preparation of triamcinolone acetonide-loaded nanoparticles using a modified emulsification/solvent diffusion method.
Methods: Mucoadhesiveness studies, in vitro drug release, x-ray powder diffraction, differential scanning calorimetry, and scanning electron microscopy were used for physicochemical characterization of nanoparticles. Thirty-six hours after inducing uveitis by intravitreal injection of a lipopolysaccharide, sampling from the aqueous humor was done and inflammatory factors, such as cell, protein, nitric oxide, and prostaglandin E2, were compared.
Results: Nanoparticles with a mean size of 178 nm and drug loading of 5.3% were prepared and used for in vivo studies in rabbits with uveitis. Higher anti-inflammatory effect was observed for polymeric nanoparticles of triamcinolone acetonide compared with microparticles of prednisolone acetate and triamcinolone acetonide, and an equal effect compared with subconjunctival injection of triamcinolone acetonide in terms of inhibiting inflammation and inflammatory mediators.
Conclusions: It can be concluded that polymeric nanoparticles of triamcinolone acetonide will provide as good an anti-inflammatory effect as the subconjunctival injection method and are better compared with other drug delivery systems.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1167/iovs.13-12296 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!