Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Gas-phase interactions of organotins with glycine have been studied by combining mass spectrometry experiments and quantum calculations. Positive-ion electrospray spectra show that the interaction of di- and tri-organotins with glycine results in the formation of [(R)2Sn(Gly)-H](+) and [(R)3Sn(Gly)](+) ions, respectively. Di-organotin complexes appear much more reactive than those involving tri-organotins. (MS/MS) spectra of the [(R)3Sn(Gly)](+) ions are indeed simple and only show elimination of intact glycine, generating the [(R)3Sn](+) carbocation. On the other hand, MS/MS spectra of [(R)2Sn(Gly)-H](+) complexes are characterized by numerous fragmentation processes. Six of them, associated with elimination of H2O, CO, H2O + CO and formation of [(R)2SnOH](+) (-57 u),[(R)2SnNH2](+) (-58 u) and [(R)2SnH](+) (-73 u), are systematically observed. Use of labeled glycines notably concludes that the hydrogen atoms eliminated in water and H2O + CO are labile hydrogens. A similar conclusion can be made for hydrogens of [(R2)SnOH](+) and [(R2)SnNH2](+) ions. Interestingly, formation [(R)2SnH](+) ions is characterized by a migration of one the α hydrogen of glycine onto the metallic center. Finally, several dissociation routes are observed and are characteristic of a given organic substituent. Calculations indicated that the interaction between organotins and glycine is mostly electrostatic. For [(R)2Sn(Gly)-H](+) complexes, a preferable bidentate interaction of the type η(2)-O,NH2 is observed, similar to that encountered for other metal ions. [(R)3Sn](+) ions strongly stabilize the zwitterionic form of glycine, which is practically degenerate with respect to neutral glycine. In addition, the interconversion between both forms is almost barrierless. Suitable mechanisms are proposed in order to account for the most relevant fragmentation processes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/jms.3223 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!