A new type of carbene-based ruthenium sensitizer, CB104, with a highly conjugated ancillary ligand, diphenylvinylthiophene-substituted benzimidazolepyridine, was designed and developed for dye-sensitized solar cell applications. The influence of the thiophene antenna on the performance of the cell anchored with CB104 was investigated. Compared with the dye CBTR, the conjugated thiophene in the ancillary ligand of CB104 enhanced the molar extinction coefficient of the intraligand π-π* transition and the intensity of the lower energy metal-to-ligand charge-transfer band. However, the incident photon-to-current conversion efficiency spectrum of the cell anchored with CB104 (0.15 mM) showed a maximum of 63 % at 420 nm. The cell sensitized with the dye CB104 attained a power conversion efficiency of 7.30 %, which was lower than that of the cell with nonconjugated sensitizer CBTR (8.92 %) under the same fabrication conditions. The variation in the performance of these two dyes demonstrated that elongating the conjugated light-harvesting antenna resulted in the reduction of short-circuit photocurrent density, which might have been due to the aggregation of dye molecules. In the presence of a coabsorbate, chenodeoxycholic acid, the CB104-sensitized cell exhibited an enhanced photocurrent density and achieved a photovoltaic efficiency of 8.36 %.

Download full-text PDF

Source
http://dx.doi.org/10.1002/asia.201300447DOI Listing

Publication Analysis

Top Keywords

highly conjugated
8
carbene-based ruthenium
8
ruthenium sensitizer
8
dye-sensitized solar
8
ancillary ligand
8
cell anchored
8
anchored cb104
8
conversion efficiency
8
photocurrent density
8
cell
6

Similar Publications

Amino groups are abundant in both natural and synthetic molecules, offering highly accessible sites for modifying native biorelevant molecules. Despite significant progress with more reactive thiol groups, methods for connecting two amino groups with reversible linkers for bioconjugation applications remain elusive. Herein, we report the use of oxidative decarboxylative condensation of glyoxylic acid to crosslink two alkyl amines via a compact formamidine linkage, applicable in both intra- and intermolecular contexts.

View Article and Find Full Text PDF

Substructure-Specific Antibodies Against Fentanyl Derivatives.

ACS Nano

January 2025

School of Chemistry and Biochemistry, Georgia Institute of Technology, 901 Atlantic Dr., Atlanta, Georgia 30332, United States.

Structural variants of the synthetic opioid fentanyl are a major threat to public health. Following an investigation showing that many derivatives are poorly detected by commercial lateral flow and related assays, we created hapten conjugate vaccines using an immunogenic virus-like particle carrier and eight synthetic fentanyl derivatives designed to mimic the structural features of several of the more dangerous analogues. Immunization of mice elicited strong antihapten humoral responses, allowing the screening of hundreds of hapten-specific hybridomas for binding strength and specificity.

View Article and Find Full Text PDF

Microcapsule-Containing Self-Reporting Materials Based on Donor-acceptor Stenhouse Adducts.

ACS Macro Lett

January 2025

Department of Chemical Engineering, Key Laboratory of Advanced Materials (MOE), Tsinghua University, Beijing 100084, China.

The microcapsule-containing self-reporting system has attracted attention for its excellent characteristics in visualizing microdamage. In this study, we developed self-reporting materials based on the formation of donor-acceptor Stenhouse adducts (DASA) from microcapsules containing Meldrum's acid furfural conjugate (MAFC). Under mechanical force, MAFC is released from broken microcapsules and forms highly colored DASA with secondary amines in the matrix to indicate the small cracks or deformations.

View Article and Find Full Text PDF

Separation of Highly Pure Semiconducting Single-Wall Carbon Nanotubes in Alkane Solvents via Double Liquid-Phase Extraction.

Nanomaterials (Basel)

December 2024

Department of Chemistry, University of Sherbrooke, 2500, Blvd de l'Université, Sherbrooke, QC J1K 2R1, Canada.

This study delves into the distinctive selective property exhibited by a non-conjugated cholesterol-based polymer, poly(CEM--EHA), in sorting semiconducting single-walled carbon nanotubes (s-SWCNTs) within isooctane. Comprised of 11 repeating units of cholesteryloxycarbonyl-2-hydroxy methacrylate (CEM) and 7 repeating units of 2-ethylhexyl acrylate (EHA), this non-conjugated polymer demonstrates robust supramolecular interactions across the sp surface structure of carbon nanotubes and graphene. When coupled with the Double Liquid-Phase Extraction (DLPE) technology, the polymer effectively segregates s-SWCNTs into the isooctane phase (nonpolar) while excluding metallic SWCNTs (m-SWCNTs) in the water phase (polar).

View Article and Find Full Text PDF

Inotuzumab Ozogamicin (InO) is an antibody-calicheamicin conjugate with striking efficacy in B-cell acute lymphoblastic leukemia (B-ALL). However, there is wide inter-patient variability in treatment response, and the genetic basis of this variation remains largely unknown. Using a genome-wide CRISPR screen, we discovered the loss of DNTT as a primary driver of InO resistance.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!