Climate extremes can ultimately reshape grassland services such as forage production and change plant functional type composition. This 3-year field research studied resistance to dehydration and recovery after rehydration of plant community and plant functional types in an upland perennial grassland subjected to climate and cutting frequency (Cut+, Cut-) disturbances by measuring green tissue percentage and above-ground biomass production (ANPP). In year 1, a climate disturbance gradient was applied by co-manipulating temperature and precipitation. Four treatments were considered: control and warming-drought climatic treatment, with or without extreme summer event. In year 2, control and warming-drought treatments were maintained without extreme. In year 3, all treatments received ambient climatic conditions. We found that the grassland community was very sensitive to dehydration during the summer extreme: aerial senescence reached 80% when cumulated climatic water balance fell to -156 mm and biomass declined by 78% at the end of summer. In autumn, canopy greenness and biomass totally recovered in control but not in the warming-drought treatment. However ANPP decreased under both climatic treatments, but the effect was stronger on Cut+ (-24%) than Cut- (-15%). This decline was not compensated by the presence of three functional types because they were negatively affected by the climatic treatments, suggesting an absence of buffering effect on grassland production. In the following 2 years, lasting effects of climate disturbance on ANPP were observable. The unexpected stressful conditions of year 3 induced a decline in grassland production in the Cut+ control treatment. The fact that this treatment cumulated higher (45%) N export over the 3 years suggests that N plays a key role in ANPP stability. As ANPP in this mesic perennial grassland did not show engineering resilience, long-term experimental manipulation is needed. Infrequent mowing appears more appropriate for sustaining grassland ANPP under future climate extremes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/gcb.12317 | DOI Listing |
Sci Total Environ
January 2025
Climate Change Impacts and Risks in the Anthropocene (C-CIA), Institute for Environmental Sciences, University of Geneva, Geneva, Switzerland; dendrolab.ch, Department of Earth Sciences, University of Geneva, Geneva, Switzerland; Department F.-A. Forel for Environmental and Aquatic Sciences, University of Geneva, Switzerland.
Over recent decades, global warming has led to sustained glacier mass reduction and the formation of glacier lakes dammed by potentially unstable moraines. When such dams break, devastating Glacial Lake Outburst Floods (GLOFs) can occur in high mountain environments with catastrophic effects on populations and infrastructure. To understand the occurrence of GLOFs in space and time, build frequency-magnitude relationships for disaster risk reduction or identify regional links between GLOF frequency and climate warming, comprehensive databases are critically needed.
View Article and Find Full Text PDFJ Dairy Sci
January 2025
Instituto de Ganadería de Montaña (CSIC-University of León), Finca Marzanas s/n, 24346 Grulleros, León, Spain.
It is currently uncertain how selection of more efficient animals might impact other traits such as resilience (which, in this context, is defined as the ability of an animal to sustain or revert quickly to its previous production level and health status after a disturbance), especially in small ruminants. However, improving, or at least maintaining, resilience is of utmost importance to ensure livestock production in the face of external perturbances, which are expected to become more prevalent in the near future due to climate change and global instability. This study was conducted to investigate whether a nutritional challenge consisting of animals receiving only 70% of their voluntary feed intake (DMI) for 26 d, might differentially affect the response of high- and low-feed efficiency (FE) sheep.
View Article and Find Full Text PDFFront Microbiol
December 2024
Department of Soil and Water Systems, University of Idaho, Moscow, ID, United States.
Soil microbial communities are vulnerable to anthropogenic disturbances such as climate change and land management decisions, thus altering microbially-mediated ecosystem functions. Increasingly, multiple stressors are considered in investigations of ecological response to disturbances. Typically, these investigations involve concurrent stressors.
View Article and Find Full Text PDFPLoS One
January 2025
University of Washington Herbarium (WTU), Burke Museum, Seattle, Washington, United States of America.
Alpine areas are host to diverse plant communities that support ecosystems through structural and floral resources and persist through specialized adaptations to harsh high-elevation conditions. An ongoing question in these plant communities is whether composition is shaped by stochastic processes (e.g.
View Article and Find Full Text PDFAnimals (Basel)
December 2024
Faculty of Environmental Sciences, Community Ecology & Conservation, Czech University of Life Sciences Prague, Kamýcká 129, CZ-165 00 Prague, Czech Republic.
Urban parks and cemeteries constitute hot spots of bird diversity in urban areas. However, the seasonal dynamics of their bird communities have been scarcely explored at large scales. This study aims to analyze the drivers of urban bird assemblage seasonality in urban parks and cemeteries comparing assemblages during breeding and non-breeding seasons in the Neotropical Region.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!