Synergistic induction of apoptosis in multiple myeloma cells by bortezomib and hypoxia-activated prodrug TH-302, in vivo and in vitro.

Mol Cancer Ther

Corresponding Author: Karin Vanderkerken, Department of Hematology and Immunology, Myeloma Center Brussels, Vrije Universiteit Brussel, Laarbeeklaan 103, B-1090 Brussels, Belgium.

Published: September 2013

Recently, we showed that hypoxia is a critical microenvironmental factor in multiple myeloma, and that the hypoxia-activated prodrug TH-302 selectively targets hypoxic multiple myeloma cells and improves multiple disease parameters in vivo. To explore approaches for sensitizing multiple myeloma cells to TH-302, we evaluated in this study the antitumor effect of TH-302 in combination with the clinically used proteasome inhibitor bortezomib. First, we show that TH-302 and bortezomib synergistically induce apoptosis in multiple myeloma cell lines in vitro. Second, we confirm that this synergism is related to the activation of caspase cascades and is mediated by changes of Bcl-2 family proteins. The combination treatment induces enhanced cleavage of caspase-3/8/9 and PARP, and therefore triggers apoptosis and enhances the cleavage of proapoptotic BH3-only protein BAD and BID as well as the antiapoptotic protein Mcl-1. In particular, TH-302 can abrogate the accumulation of antiapoptotic Mcl-1 induced by bortezomib, and decreases the expression of the prosurvival proteins Bcl-2 and Bcl-xL. Furthermore, we found that the induction of the proapoptotic BH3-only proteins PUMA (p53-upregulated modulator of apoptosis) and NOXA is associated with this synergism. In response to the genotoxic and endoplasmic reticulum stresses by TH-302 and bortezomib, the expression of PUMA and NOXA were upregulated in p53-dependent and -independent manners. Finally, in the murine 5T33MMvv model, we showed that the combination of TH-302 and bortezomib can improve multiple disease parameters and significantly prolong the survival of diseased mice. In conclusion, our studies provide a rationale for clinical evaluation of the combination of TH-302 and bortezomib in patients with multiple myeloma.

Download full-text PDF

Source
http://dx.doi.org/10.1158/1535-7163.MCT-13-0123DOI Listing

Publication Analysis

Top Keywords

multiple myeloma
24
th-302 bortezomib
16
myeloma cells
12
th-302
9
multiple
8
apoptosis multiple
8
hypoxia-activated prodrug
8
prodrug th-302
8
multiple disease
8
disease parameters
8

Similar Publications

Background: Approval of proteasome inhibitors, immunomodulatory drugs, and anti-CD38 monoclonal antibodies (mAbs), such as daratumumab, has reshaped treatment patterns in patients with multiple myeloma (MM) in Japan. This retrospective study evaluated patient characteristics, treatment patterns, and trends in MM patients using Medical Data Vision, the largest electronic health records database in Japan with anonymous inpatient and outpatient health information.

Methods: Patients aged ≥18 years, with ≥2 records of an MM diagnostic and disease code and ≥1 record of MM treatment between 01 April 2008 and 30 June 2023 were included.

View Article and Find Full Text PDF

We present a study of rare germline predisposition variants in 954 unrelated individuals with multiple myeloma (MM) and 82 MM families. Using a candidate gene approach, we identified such variants across all age groups in 9.1% of sporadic and 18% of familial cases.

View Article and Find Full Text PDF

Blood pressure (BP) variability (BPV) is an independent predictor of cardiovascular (CV) events. The role of BPV in defining risk of cancer therapy-related cardiovascular toxicity (CTR-CVT) is currently unknown. The aims of this study were: (i) to evaluate BPV in a population of patients with Multiple Myeloma, undergoing proteasome inhibitors therapy; (ii) to assess the predictive value of BPV for CTR-CVT; (iii) to analyze clusters of subjects based on BPV.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!