Paediatric dose cannot be scaled down directly from an adult using weight (eg, mg/kg). This results in a dose too small in infants and children because elimination does not change in direct proportion to weight, and a dose too large in neonates whose drug elimination pathways are immature. The goal of treatment is a desired response (the target effect). An understanding of the concentration-response relationship (pharmacodynamics) can be used to predict the target concentration required to achieve this target effect. Pharmacokinetic knowledge then determines the target dose that will achieve the target concentration. Variability associated with both pharmacokinetics and pharmacodynamics can be reduced by demographic information (covariates), which can be used to help predict the target dose in a specific child. The covariates of size, maturation and organ function are the three principle contributors to pharmacokinetic variability. Children (2 years postnatal age or older) are essentially similar to adults (ie, mature) and differ only in size. Maturation processes are only important in neonates and infants, therefore, this cohort can be viewed as immature children. Paediatric pharmacodynamic studies are fewer than pharmacokinetic studies, but are required to elucidate the target concentration and consequent dose. The lack of pharmacodynamic studies is a serious challenge for rational dosing.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1136/archdischild-2013-303720 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!