Renewable biofuel additives from the ozonolysis of lignin.

Bioresour Technol

Centre for Sustainable Chemical Technologies, Department of Chemical Engineering, University of Bath, Bath BA2 7AY, UK.

Published: September 2013

In this investigation ozonolysis in the presence of ethanol was used to depolymerise lignin, resulting in a low conversion of oxygenated aromatics over short reaction times, or a range of saturated esters over 24 h. Short chain oxygenates can be used as fuel additives, displacing a percentage of a hydrocarbon fuel while leading to improvement in some of the fuel properties. The utility of the resulting bio-oils was therefore assessed by blending with a range of fuels. Guaiacol, a potential antioxidant, was formed over short reaction times and was found to be completely miscible with low-sulphur petrol (ULSP), diesel, aviation kerosene and rapeseed methyl ester. The mainly aliphatic proportion of the bio-oil produced over 24 h could be blended with the fuels replacing a maximum of 12-17 wt.% of the hydrocarbon fuel.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biortech.2013.06.048DOI Listing

Publication Analysis

Top Keywords

short reaction
8
reaction times
8
hydrocarbon fuel
8
renewable biofuel
4
biofuel additives
4
additives ozonolysis
4
ozonolysis lignin
4
lignin investigation
4
investigation ozonolysis
4
ozonolysis presence
4

Similar Publications

Modularly organizing active micromachines into high-grade metamachines makes a great leap for operating the microscopic world in a biomimetic way. However, modulating the nonreciprocal interactions among different colloidal motors through chemical reactions to achieve the controllable construction of active colloidal metamachines with specific dynamic properties remains challenging. Here, we report the phototactic active colloidal metamachines constructed by shape-directed dynamic self-assembly of chemically driven peanut-shaped TiO colloidal motors and Janus spherical Pt/SiO colloidal motors.

View Article and Find Full Text PDF

Evaluation of Nanomagnetite-Biochar Composite for BTA Removal.

Nanomaterials (Basel)

January 2025

ISTerre, University Grenoble Alpes, University Savoie Mont Blanc, CNRS, IRD, University Gustave Eiffel, 38058 Grenoble, France.

In this study, the removal of benzotriazole (BTA), a pervasive aquatic contaminant widely used for its anti-corrosion, UV-stabilizing, and antioxidant properties, by nanomagnetite, biochar, and nanomagnetite-biochar composite is investigated. Nanomagnetite and nanomagnetite-biochar composite were synthesized under anoxic conditions and tested for BTA removal efficiency at neutral pH under both oxic and anoxic conditions at different time scales. Within the short time scale (up to 8 h), the removal of BTA by nanomagnetite-biochar composite was shown to be due to BTA deprotonation by the nanomagnetite surface.

View Article and Find Full Text PDF

TERT de novo mutation-associated dyskeratosis congenita and porto-sinusoidal vascular disease: a case report.

J Med Case Rep

January 2025

Department of Hepatic Biliary Pancreatic Medicine, First Hospital of Jilin University, 1 Xinmin Avenue, Changchun, 130021, China.

Background: Dyskeratosis congenita is a rare genetic disease due to telomere biology disorder and characterized by heterogeneous clinical manifestations and severe complications. "Porto-sinusoidal vascular disease" has been recently proposed, according to new diagnostic criteria, to replace the term "idiopathic non-cirrhotic portal hypertension." TERT plays an important role in telomeric DNA repair and replication.

View Article and Find Full Text PDF

Background: Echolocating bats face an intense arms race with insect prey that can detect bat calls and initiate evasive maneuvers. Their high closing speeds and short biosonar ranges leave bats with only a few 100 ms between detection and capture, suggesting a reactive sensory-motor operation that might preclude tracking of escaping prey. Here we test this hypothesis using greater mouse-eared bats (Myotis myotis) as a model species.

View Article and Find Full Text PDF

The effect of occlusion on the visual working memory pointer-system.

Cortex

January 2025

The School of Psychological Sciences, Tel Aviv University, Tel Aviv, Israel; The Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel.

To access its online representations, visual working memory (VWM) relies on a pointer-system that creates correspondence between objects in the environment with their memory representations. This pointer-system allows VWM to modify its representations using a process called updating. When the pointer is invalidated, however, VWM triggers a process called resetting in which the no longer relevant representation and pointer are replaced.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!