Ferrofluids and dry magnetic particles are two separate classes of magnetic materials with specific niche applications, mainly due to their distinct viscosity and interparticle distances. For practical applications, the stability of these two properties is highly desirable but hard to achieve. Conceptually, a possible solution to this problem would be encapsulating the magnetic particles but keeping them free to rotate inside a capsule with constant interparticle distances and thus shielded from changes in the viscosity of the surrounding media. Here we present an example of such materials by the encapsulation of magnetic ferrofluids into highly hydrophobic silica, leading to the formation of dry ferrofluids, i.e., a material behaving macroscopically as a dry powder but locally as a ferrofluid where magnetic nanoparticles are free to rotate in the liquid.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c3nr01784b | DOI Listing |
ACS Sens
January 2025
CAS Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, P. R. China.
Flexible pressure sensors are pivotal in advancing artificial intelligence, the Internet of Things (IoT), and wearable technologies. While microstructuring the functional layer of these sensors effectively enhances their performance, current fabrication methods often require complex equipment and time-consuming processes. Herein, we present a novel magnetization-induced self-assembly method to develop a magnetically grown microneedle array as a dielectric layer for flexible capacitive pressure sensors.
View Article and Find Full Text PDFPhys Chem Chem Phys
January 2025
Ural Federal University, Ekaterinburg, Russia.
This work is devoted to the study of the static magnetization of immobilized multi-core particles (MCPs) and their ensembles. These objects model aggregates of superparamagnetic nanoparticles that are taken up by biological cells and subsequently used, for example, as magnetoactive agents for cell imaging. In this study, we derive an analytical formula that allows us to predict the static magnetization of MCPs consisting of immobilized granules, in which the magnetic moment rotates freely the Néel mechanism.
View Article and Find Full Text PDFAnal Chem
January 2025
State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China.
Timely and accurate detection of trace mycotoxins in agricultural products and food is significant for ensuring food safety and public health. Herein, a deep learning-assisted and entropy-driven catalysis (EDC)-Argonaute powered fluorescence single-particle aptasensing platform was developed for ultrasensitive detection of fumonisin B (FB) using single-stranded DNA modified with biotin and red fluorescence-encoded microspheres as a signal probe and streptavidin-conjugated magnetic beads as separation carriers. The binding of aptamer with FB releases the trigger sequence to mediate EDC cycle to produce numerous 5'-phosphorylated output sequences, which can be used as the guide DNA to activate downstream Argonaute (Ago) for cleaving the signal probe, resulting in increased number of fluorescence microspheres remaining in the final reaction supernatant after magnetic separation.
View Article and Find Full Text PDFHeliyon
January 2025
Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region, Collaborative Innovation Center for Mountain Ecology & Agro-Bioengineering, College of Life Sciences, Guizhou University, Guiyang, 550025, China.
Vegetation change significantly altered the hydrological processes and soil erosion within riparian ecosystems. It is unclear how change in managed vegetation types affect the geochemical behavior of heavy metals (HMs) and magnetic particles in karst riparian areas. Two soil depths of 0-20 cm and 20-40 cm were taken in alien species (), native species and in a typical urban plateau Lake wetland, Caohai lake, China.
View Article and Find Full Text PDFAdv Healthc Mater
January 2025
The Institute of Chinese Medicine of Nanjing University, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing University Drum Tower Hospital Clinical College, Nanjing University of Chinese Medicine, Nanjing, 210008, China.
Drug-induced liver injury (DILI) is a common clinical problem with urgent respect to demanding early diagnosis. Exosomal miRNAs are reliable and noninvasive biomarkers for the early diagnosis of DILI. However, accurate and feasible detection of exosomal miRNAs is often hampered by the low abundance of miRNAs, inefficient exosome separation techniques, and the requirement for RNA extraction from large sample volumes.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!