Activin receptor-like kinase 7 mediates high glucose-induced H9c2 cardiomyoblast apoptosis through activation of Smad2/3.

Int J Biochem Cell Biol

The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Qilu Hospital of Shandong University, Ji'nan, Shandong Province, China.

Published: September 2013

Cardiomyocyte apoptosis is an important pathological change of diabetic cardiomyopathy. How the elevated glucose levels cause cell apoptosis remains unknown. The aim of our study was to investigate whether activin receptor-like kinase 7 (ALK7)-Smad2/3 signaling pathway plays an important role in high glucose-induced cardiomyocyte apoptosis. H9c2 cardiomyoblasts and neonatal rat cardiomyocytes were treated with 33mmol/l glucose. The expression of ALK7, Smad2 and Smad3 were inhibited by small interfering RNA respectively. The level of ALK7, total Smad2/3, phosphorylated Smad2/3, B-cell lymphoma-2 (Bcl-2) and cleaved Caspase3 were evaluated using western blot. The apoptosis rate was detected by flow cytometer. High glucose treatment caused the apoptosis of H9c2 cardiomyocyte and the inhibition of Smad2 or Smad3 attenuated this apoptosis. ALK7 existed in both H9c2 cardiomyoblasts and neonatal rat cardiomyocytes and high ambient glucose upregulated its expression. The increased expression level of cleaved Caspase3 and apoptosis rate and decreased expression of Bcl-2 were reversed after ALK7 was inhibited. The expression of phosphorylated Smad2/3 also decreased after the knockdown of ALK7. Our findings suggest that ALK7 mediates high ambient glucose-induced H9c2 cardiomyoblasts apoptosis through the activation of Smad2/3.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biocel.2013.06.018DOI Listing

Publication Analysis

Top Keywords

h9c2 cardiomyoblasts
12
apoptosis
9
activin receptor-like
8
receptor-like kinase
8
mediates high
8
high glucose-induced
8
glucose-induced h9c2
8
apoptosis activation
8
activation smad2/3
8
cardiomyocyte apoptosis
8

Similar Publications

Extractable organic matter from PM inhibits cardiomyocyte differentiation via AHR-mediated mA RNA methylation.

J Hazard Mater

January 2025

The First Affiliated Hospital, MOE Education Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College of Soochow University, Suzhou, China; Jiangsu Key Laboratory of Preventive and Translational Medicine for Major Chronic Non-Communicable Diseases, China. Electronic address:

An ever-increasing body of research has established a link between maternal PM2.5 exposure and congenital heart diseases in the offspring, but the underlying mechanisms remain elusive. We recently reported that activation of the aryl hydrocarbon receptor (AHR) by PM2.

View Article and Find Full Text PDF

Background: The role of 1,25-dihydroxyvitamin-D3 (VitD) and sirtuin-1 (SIRT1) in mitigating pathological cardiac remodeling is well recognized. However, the potential for SIRT1 to mediate the inhibitory effects of VitD on angiotensin II (Ang II) -induced hypertrophy in H9c2 cardiomyoblasts remains unclear.

Methods: H9c2 cardiomyoblasts were exposed to Ang II or a combination of VitD and Ang II, both in the absence and presence of SIRT1-specific siRNA.

View Article and Find Full Text PDF

Oxidative stress promotes T. cruzi growth and development of chronic Chagas heart dysfunction. However, the literature contains gaps that must be fulfilled, largely due to variations in parasite DTU sources, cell types, mouse strains, and tools to manipulate redox status.

View Article and Find Full Text PDF

CMC/Gel/GO 3D-printed cardiac patches: GO and CMC improve flexibility and promote H9C2 cell proliferation, while EDC/NHS enhances stability.

Biofabrication

November 2024

Institute of Biomedical Engineering, Boğaziçi University, Rasathane Cd. Kandilli Campus, Kandilli Mah., 34684 Istanbul, Turkey.

In this research, carboxymethyl cellulose (CMC)/gelatin (Gel)/graphene oxide (GO)-based scaffolds were produced by using extrusion-based 3D printing for cardiac tissue regeneration. Rheological studies were conducted to evaluate the printability of CMC/Gel/GO inks, which revealed that CMC increased viscosity and enhanced printability. The 3D-printed cardiac patches were crosslinked with N-(3-dimethylaminopropyl)-n'-ethylcarbodiimide hydrochloride (EDC)/N-hydroxysuccinimide (NHS) (100:20 mM, 50:10 mM, 25:5 mM) and then characterized by mechanical analysis, electrical conductivity testing, contact angle measurements and degradation studies.

View Article and Find Full Text PDF

Background: Natural compounds offer promising targets for cardioprotection, which could lead to enhanced clinical outcomes. We aimed to determine the cardioprotective effects of Fruitflow®, a water-soluble tomato extract known for its anti-platelet effects in doxorubicin-induced toxicity in rat cardiomyoblast cell line pathological alteration in heart tissue of high fat-fed Wistar Albino rats.

Methods: The cardioprotective effect of Fruitflow® was investigated using H9c2 (2-1) cells (rat cardiomyoblast cell line) and high-fat diet-fed Wistar Albino rats.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!