A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

The use of HyPer to examine spatial and temporal changes in H2O2 in high light-exposed plants. | LitMetric

Exposure of photosynthetic cells of leaf tissues of Arabidopsis thaliana (Arabidopsis) to high light intensities (HL) may provoke a rapid rise in hydrogen peroxide (H2O2) levels in chloroplasts and subcellular compartments, such as peroxisomes, associated with photosynthetic metabolism. It has been hypothesized that when H2O2 is contained at or near its site of production then it plays an important role in signaling to induce acclimation to HL. However, should this discrete containment fail and H2O2 levels exceed the capacity of antioxidant systems to scavenge them, then oxidative stress ensues which triggers cell death. To test this hypothesis, the spatiotemporal accumulation of H2O2 needs to be quantified in different subcellular compartments. In this chapter, preliminary experiments are presented on the use of Arabidopsis seedlings transformed with a nuclear-encoded cytosol-located yellow fluorescent protein-based sensor for H2O2, called HyPer. HyPer allows ratiometric determination of its fluorescence at two excitation wavelengths, which frees quantification of H2O2 from the variable levels of HyPer in vivo. HyPer fluorescence was shown to have the potential to provide the necessary spatial, temporal, and quantitative resolution to study HL responses of seedlings using confocal microscopy. Chlorophyll fluorescence imaging was used to quantify photoinhibition of photosynthesis induced by HL treatment of seedlings on the microscope staging. However, several technical issues remain, the most challenging of which is the silencing of HyPer expression beyond the seedling stage. This limited our pilot studies to cotyledon epidermal cells, which while not photosynthetic, nevertheless responded to HL with 45% increase in cytosolic H2O2.

Download full-text PDF

Source
http://dx.doi.org/10.1016/B978-0-12-405882-8.00010-6DOI Listing

Publication Analysis

Top Keywords

spatial temporal
8
h2o2
8
h2o2 levels
8
subcellular compartments
8
hyper
6
hyper examine
4
examine spatial
4
temporal changes
4
changes h2o2
4
h2o2 high
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!