A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Novel formation of Ag/Au bimetallic nanoparticles by physical mixture of monometallic nanoparticles in dispersions and their application to catalysts for aerobic glucose oxidation. | LitMetric

Ag/Au bimetallic nanoparticles (BNPs) with a size less than 2 nm were prepared by physical mixture of colloidal dispersions of Ag and Au nanoparticles (NPs). This provides an example of fabrication of BNPs with self-organization by the reaction between metal NPs. Although Ag/Au BNPs having different structures and compositions are one of the most widely studied bimetallic systems in the literature due to their wide range of uses such as in catalysis, electronics, plasmonics, optical sensing, and surface-enhanced Raman scattering, we first prepared such BNPs by physical mixture and characterized them by UV-vis spectroscopy, SERS, XPS, TEM, and EDS in HR-STEM. The present fabrication method has the advantage of avoiding the unfavorable formation of AgCl precipitates in the reaction process which are always produced when Ag(+) ions are used as a starting material in combination with a HAuCl4 precursor. These Ag/Au BNPs showed high catalytic activities for aerobic glucose oxidation, and the highest activity of 11,510 mol of glucose·h(-1)·mol of metal(-1) was observed for the BNPs with a Ag/Au atomic ratio of 1/4; the activity value is about 2 times higher than that of Au NPs with nearly the same particle size. XPS and DFT calculation results show that the negatively charged Au atoms due to the electron charge transfer effects from neighboring Ag atoms and poly(N-vinyl-2-pyrrolidone) act as catalytically active sites and play an important role in the aerobic glucose oxidation.

Download full-text PDF

Source
http://dx.doi.org/10.1021/la401878gDOI Listing

Publication Analysis

Top Keywords

physical mixture
12
aerobic glucose
12
glucose oxidation
12
ag/au bimetallic
8
bimetallic nanoparticles
8
ag/au bnps
8
bnps
6
ag/au
5
novel formation
4
formation ag/au
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!