Aim: This study aimed to develop a novel influenza A vaccine by conjugating the highly conserved extracellular region of the matrix 2 protein (M2e) of influenza A virus to gold nanoparticles (AuNPs) and to test the vaccine in a mouse influenza challenge model.
Materials & Methods: Citrate-reduced AuNPs (diameter: 12 nm) were synthesized, and characterized by transmission electron microscopy and dynamic light scattering. M2e was conjugated to AuNPs through thiol-gold interactions to form M2e-AuNP conjugates. Particle stability was confirmed by UV-visible spectra, and M2e conjugation was further characterized by x-ray photoelectron spectroscopy. Mice were immunized with M2e-AuNPs with or without CpG (cytosine-guanine rich oligonucleotide) as an adjuvant with appropriate control groups. Sera was collected and M2e-specific immunoglobulin (IgG) was measured, and immunized mice were challenged with PR8-H1N1 influenza virus.
Results: M2e-capped AuNPs could be lyophilized and stably resuspended in water. Intranasal vaccination of mice with M2e-AuNP conjugates induced M2e-specific IgG serum antibodies, which significantly increased upon addition of soluble CpG as adjuvant. Upon challenge with lethal PR8, mice vaccinated with M2e-AuNP conjugates were only partially protected, while mice that received soluble CpG as adjuvant in addition to M2e-AuNP were fully protected.
Conclusion: Overall, this study demonstrates the potential of using the M2e-AuNP conjugates with CpG as an adjuvant as a platform for developing an influenza A vaccine.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3958969 | PMC |
http://dx.doi.org/10.2217/nnm.13.58 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!