Mahanine, a carbazole alkaloid is a potent anticancer molecule. To recognize the structure-activity correlation, mahanine was chemically modified. Antiproliferative activity of these derivatives was determined in 19 cancer cell lines from 7 different origins. Mahanine showed enhanced apoptosis compared to dehydroxy-mahanine-treated cells, indicating significant contribution of the C-7-OH group. O-Methylated-mahanine and N-methylated dehydroxy-mahanine-treated cells exhibited apoptosis only at higher concentrations, suggesting additional contribution of 9-NH group. Using biophysical techniques, we demonstrated that mahanine interacts with DNA through strong association with phosphate backbone compared to other derivatives but is unable to induce any conformational change in DNA, hence suggesting the possibility of being a minor groove binder. This was corroborated by molecular modeling and isothermal titration calorimetry studies. Taken together, the results of the current study represent the first evidence of involvement of C-7-OH and 9-NH group of mahanine for its cytotoxicity and its minor groove binding ability with DNA.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jm400290qDOI Listing

Publication Analysis

Top Keywords

minor groove
12
groove binding
8
involvement c-7-oh
8
dehydroxy-mahanine-treated cells
8
9-nh group
8
mahanine
6
mahanine dna
4
dna minor
4
binding agent
4
agent exerts
4

Similar Publications

Investigation of the impact of R273H and R273C mutations on the DNA binding domain of P53 protein through molecular dynamic simulation.

J Biomol Struct Dyn

February 2025

Laboratory of Integrative Genomics, Department of Integrative Biology, School of Bio Sciences and Technology, Vellore Institute of Technology (VIT), Vellore, India.

The P53 protein, a cancer-associated transcriptional factor and tumor suppressor, houses a Zn ion in its DNA-binding domain (DBD), essential for sequence-specific DNA binding. However, common mutations at position 273, specifically from Arginine to Histidine and Cysteine, lead to a loss of function as a tumor suppressor, also called DNA contact mutations. The mutant (MT) P53 structure cannot stabilize DNA due to inadequate interaction.

View Article and Find Full Text PDF

Histone N-tails modulate sequence-specific positioning of nucleosomes.

J Biol Chem

December 2024

National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA. Electronic address:

Spatial organization of chromatin is essential for cellular functioning. However, the precise mechanisms governing sequence-dependent positioning of nucleosomes on DNA still remain unknown in detail. Existing algorithms, taking into account the sequence-dependent deformability of DNA and its interactions with the histone globular domains, predict rotational setting of only 65% of human nucleosomes mapped in vivo.

View Article and Find Full Text PDF

Structural investigation of erdafitinib, an anticancer drug, with ctDNA: A spectroscopic and computational study.

Biochim Biophys Acta Gen Subj

December 2024

Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh 202002, India. Electronic address:

The interaction of drugs with DNA is crucial for understanding their mechanism of action, particularly in the context of gene expression regulation. Erdafitinib (EDB), a pan-FGFR (fibroblast growth factor receptor) inhibitor approved by the FDA, is a potent anticancer agent used primarily in the treatment of urothelial carcinoma. In this study, the binding interaction between EDB and calf thymus DNA (ctDNA) was assessed using molecular docking, UV-absorption spectroscopy, fluorescence spectroscopy, and circular dichroism (CD) spectroscopy.

View Article and Find Full Text PDF

The ability to address specific sequences within DNA is of tremendous interest in biotechnology and biomedicine. Various technologies have been established over the past few decades, such as nicking enzymes and methyltransferase-directed sequence-specific labeling, transcription activator-like effector nucleases (TALENs), the CRISPR-Cas9 system, and polyamides of heterocycles as sequence-specific DNA minor groove binders. Pyrrole-imidazole polyamides have been reported to recognize predetermined DNA sequences, and some successful attempts have demonstrated their potential in regulating gene expression.

View Article and Find Full Text PDF

Using a computer modeling approach, we proposed a structure for a potential GC-specific DNA ligand, which could form a complex with DNA in the minor groove similar to that formed by Hoechst 33258 at DNA AT-enriched sites. According to this model, , a bisbenzoxazole ligand, was synthesized. The results of spectrophotometric methods supported the complex formation of the compound under study with DNA differing in the nucleotide composition.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!