Modeling heterogeneity for count data: A study of maternal mortality in health facilities in Mozambique.

Biom J

Department of Mathematics and Informatics, Universidade Eduardo Mondlane, Av. Julius Nyerere, Campus, 3453, P.O. Box 257, Maputo, Mozambique.

Published: September 2013

Count data are very common in health services research, and very commonly the basic Poisson regression model has to be extended in several ways to accommodate several sources of heterogeneity: (i) an excess number of zeros relative to a Poisson distribution, (ii) hierarchical structures, and correlated data, (iii) remaining "unexplained" sources of overdispersion. In this paper, we propose hierarchical zero-inflated and overdispersed models with independent, correlated, and shared random effects for both components of the mixture model. We show that all different extensions of the Poisson model can be based on the concept of mixture models, and that they can be combined to account for all different sources of heterogeneity. Expressions for the first two moments are derived and discussed. The models are applied to data on maternal deaths and related risk factors within health facilities in Mozambique. The final model shows that the maternal mortality rate mainly depends on the geographical location of the health facility, the percentage of women admitted with HIV and the percentage of referrals from the health facility.

Download full-text PDF

Source
http://dx.doi.org/10.1002/bimj.201200233DOI Listing

Publication Analysis

Top Keywords

count data
8
maternal mortality
8
health facilities
8
facilities mozambique
8
sources heterogeneity
8
health facility
8
health
5
modeling heterogeneity
4
heterogeneity count
4
data
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!