Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Phosphatidylserine (PS) has been demonstrated to promote bone mineralization. It has also been used in bone repairing biomaterials as a functional molecule. However, the effect of PS on mesenchymal stem cells (MSCs) is not clear. In this study, we determined the effect of PS on the osteogenic differentiation of human MSCs (hMSCs) cultured in growth or osteogenic differentiation medium and the role of the ERK1/2 signaling pathway on PS activity. Cytotoxicity of PS was measured by MTT assay in growth medium for 5 days. Cell osteogenic differentiation was evaluated by alkaline phosphatase (ALP) activity analysis, Alizarin Red S staining and real-time PCR assay. Western blotting and ERK blocking assay were used to examine the role of ERK1/2 signaling pathway on PS activity. The results showed no cytotoxicity for the doses of PS administered. For 21 days, 50-100 μM PS increased ALP expression and mineralization of hMSCs. The expression of the osteogenic gene marker, ALP, osteocalcin (OC), and RUNX2 was enhanced by 50 μM PS treatment at day 14. Phospho-ERK was activated by 50 μM PS at 30 min and 1h in growth medium. In osteogenic medium, 50 μM PS extended phospho-ERK activation by osteogenic induction medium from 30 min to 8 h. U0126, an ERK inhibitor, suppressed the ALP expression induced by PS. Our data indicate that the ERK signal is potentially a mediator in the process of osteogenic differentiation of hMSCs induced by PS. PS, as a functional molecule, has high potential for use in bone repairing biomaterials and bone tissue engineering.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.msec.2013.01.005 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!