Nutrient depletion within three-dimensional (3D) scaffolds is one of the major hurdles in the use of this technology to grow cells for applications in tissue engineering. In order to help in addressing it, we herein propose to use the controlled release of encapsulated nutrients within polymer microspheres into chitosan-based 3D scaffolds, wherein the microspheres are embedded. This method has allowed maintaining a stable concentration of nutrients within the scaffolds over the long term. The polymer microspheres were prepared using multiple emulsions (w/o/w), in which bovine serum albumin (BSA) and poly (lactic-co-glycolic) acid (PLGA) were regarded as the protein pattern and the exoperidium material, respectively. These were then mixed with a chitosan solution in order to form the scaffolds by cryo-desiccation. The release of BSA, entrapped within the embedded microspheres, was monitored with time using a BCA kit. The morphology and structure of the PLGA microspheres containing BSA before and after embedding within the scaffold were observed under a scanning electron microscope (SEM). These had a round shape with diameters in the range of 27-55 μm, whereas the chitosan-based scaffolds had a uniform porous structure with the microspheres uniformly dispersed within their 3D structure and without any morphological change. In addition, the porosity, water absorption and degradation rate at 37 °C in an aqueous environment of 1% chitosan-based scaffolds were (92.99±2.51) %, (89.66±0.66) % and (73.77±3.21) %, respectively. The studies of BSA release from the embedded microspheres have shown a sustained and cumulative tendency with little initial burst, with (20.24±0.83) % of the initial amount released after 168 h (an average rate of 0.12%/h). The protein concentration within the chitosan-based scaffolds after 168 h was found to be (11.44±1.81)×10(-2) mg/mL. This novel chitosan-based scaffold embedded with PLGA microspheres has proven to be a promising technique for the development of new and improved tissue engineering scaffolds.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.msec.2012.12.054 | DOI Listing |
Biomimetics (Basel)
December 2024
Department of Oral and Maxillofacial Surgery and Periodontology, School of Dentistry of Ribeirão Preto, University of São Paulo, Avenida Do Café-Subsetor Oeste-11 (N-11), Ribeirão Preto 14040-904, SP, Brazil.
Background: The use of ex vivo assays associated with biomaterials may allow the short-term visualization of a specific cell type response inserted in a local microenvironment. Blood is the first component to come into contact with biomaterials, providing blood clot formation, being substantial in new tissue formation. Thus, this research investigated the physiological blood clot (PhC) patterns formed in 3D scaffolds (SCAs), based on chitosan and 20% beta-tricalcium phosphate and its effect on osteogenesis.
View Article and Find Full Text PDFEur Endod J
December 2024
Department of Pediatric Dentistry, Damascus University, Faculty of Dentistry, Damascus, Syria.
Objective: This study aimed to evaluate pulp regeneration by comparing the application of native chitosan-based scaffolds with enzymatically modified chitosan-based scaffolds in mature teeth with apical lesions, using clinical and radiographic assessments.
Methods: The eligibility criteria for this study were participants aged between 15-45 years, free from systemic diseases and with necrotic mature single-rooted teeth with periapical lesions. The teeth were equally and randomly allocated into three groups (1: 1: 1 allocation): Group A received treatment with a Blood Clot (BC) scaffold; Group B with a combination of Native Chitosan and Blood Clot (NCS+BC) scaffold; and Group C with Enzymatically-Modified Chitosan and Blood Clot (EMCS+BC) scaffold.
Small
December 2024
IITB-Monash Research Academy, Mumbai, Maharashtra, 400076, India.
Skeletal muscle cell growth impairment can result in severe health issues, such as reduced mobility, metabolic problems, and cardiovascular issues, which can significantly impact an individual's overall health and lifestyle. To address this issue, it is essential to adopt a multi-faceted approach. Conventional 2D cell culture methods fail to replicate the critical features of in vivo micro/nanoarchitecture, which is crucial for the growth of skeletal muscle cells.
View Article and Find Full Text PDFIn Vitro Cell Dev Biol Anim
December 2024
Aquatic Animal Health Laboratory, PG & Research Department of Zoology, C. Abdul Hakeem College (Affiliated to Thiruvalluvar University), Melvisharam, 632509, Tamil Nadu, India.
Chitosan-based hydrogels have gained considerable attention in biomedical research due to their inherent biocompatibility, biodegradability, and non-toxicity. When combined with polyvinyl alcohol (PVA), the resulting hydrogels exhibit superior mechanical strength, elasticity, and swelling capacity, making them highly suitable for a range of applications, including wound healing, tissue engineering, and controlled drug delivery. In this study, we synthesized and characterized a novel PVA/gelatin/chitosan (PVA/G/C) hydrogel composite using a series of analytical techniques such as Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), scanning electron microscopy (SEM), and energy-dispersive X-ray analysis (EDAX).
View Article and Find Full Text PDFInt J Biol Macromol
December 2024
Fundamental Chemistry Department, Institute of Chemistry, University of São Paulo, Av. Prof. Lineu Prestes 748, 05508-000 São Paulo, Brazil. Electronic address:
The mechanical properties of scaffolds can significantly influence cell behavior. We propose a methodology for producing chitosan and vanillin-crosslinked chitosan films with tunable mechanical properties to be applied as scaffolds for C2C12 myoblasts. In this approach, aqueous polydimethylsiloxane (PDMS) elastomeric dispersions were prepared using polysorbate 20 as emulsifier.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!