Sol-gel derived nanoscale bioactive glass (NBG) particles reinforced poly(ε-caprolactone) composites for bone tissue engineering.

Mater Sci Eng C Mater Biol Appl

Department of Dental Laboratory Science and Engineering, Korea University, Seoul, 136-703, Republic of Korea.

Published: April 2013

This study investigated the effect of the addition of sol-gel derived nanoscale bioactive glass (NBG) particles on the mechanical properties and biological performances of PCL polymer, in order to evaluate the potential applications of PCL/NBG composites for bone tissue regeneration. Regardless of the NBG contents (10, 20, and 30 wt.%), the NBG particles, which were synthesized through the sol-gel process using polyethylene glycol (PEG) polymer as a template, could be uniformly dispersed in the PCL matrix, while generating pores in the PCL/NBG composites. The elastic modulus of the PCL/NBG composites increased remarkably from 89±11 MPa to 383±50 MPa with increasing NBG content from 0 to 30 wt.%, while still showing good ultimate tensile strength in the range of 15-19 MPa. The hydrophilicity, water absorption and degradation behavior of the PCL/NBG composites were also enhanced by the addition of the NBG particles. Furthermore, the PCL/NBG composite with a NBG content of 30 wt.% showed significantly enhanced in vitro bioactivity and cellular response compared to those of the pure PCL.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.msec.2012.11.039DOI Listing

Publication Analysis

Top Keywords

nbg particles
16
pcl/nbg composites
16
sol-gel derived
8
derived nanoscale
8
nanoscale bioactive
8
bioactive glass
8
glass nbg
8
composites bone
8
bone tissue
8
nbg content
8

Similar Publications

Narrow-bandgap (NBG) Sn-Pb mixed perovskite solar cells (PSCs) represent a promising solution for surpassing the radiative efficiency of single-junction solar cells. The unique bandgap tunability of halide perovskites enables optimal tandem configurations of wide-bandgap (WBG) and NBG subcells. However, these devices are limited by the susceptibility of Sn in the NBG bottom cell to being oxidized to Sn, creating detrimental Sn vacancies.

View Article and Find Full Text PDF

This study aims to characterise and assess the stability of an optimised lignocaine-adrenaline nanogel using central composite design (CCD). Compatibility studies were conducted using Attenuated Total Reflectance-Fourier Transform Infrared (ATR-FTIR) and Ultraviolet-visible (UV-vis) spectroscopy. Eighteen lignocaine-adrenaline Nanoemulsion (LANE) formulations derived using CCD were characterised for particle size, polydispersity index (PDI), zeta potential and pH.

View Article and Find Full Text PDF

Objective:  The aim is to coat orthodontic brackets with two different bioactive materials and to compare the mechanical and morphological properties of coated brackets and tooth surfaces.

Materials And Methods:  A total of 120 stainless steel brackets were divided equally into three groups, that is, the uncoated brackets and nanohydroxyapatite (nHA)-coated, and nanobioactive glass (nBG)-coated brackets using a spin coater machine. The brackets were bonded on the enamel surface and underwent remineralization/demineralization cycles for days 1, 7, 14, and 30.

View Article and Find Full Text PDF

The aim of this in vitro study was to investigate some physical properties of Biodentine (BD) (Septodont, France) that has been modified by adding nanosized bioactive glass (nBG) particles to it in different ratios. The cement was modified by adding 1% (7 mg) and 2% (14 mg) nBG powder to BD. BD was used as the control group in its commercial form.

View Article and Find Full Text PDF

Fabrication and assessment of bifunctional electrospun poly(l-lactic acid) scaffolds with bioglass and zinc oxide nanoparticles for bone tissue engineering.

Int J Biol Macromol

February 2023

Grupo Polímeros, Departamento de Ciencias del Ambiente, Facultad de Química y Biología, Universidad de Santiago de Chile, USACH, Casilla 40, Correo 33, Santiago, Chile. Electronic address:

Electrospun scaffolds based on poly(l-lactic acid) (PLLA) with bioglass (n-BG) and zinc oxide (n-ZnO), and mixture of both, were developed to design bifunctional biomaterials with enhanced bioactive and biocidal properties. The presence of n-BG increased the fiber diameter of the pure PLA from 1.5 ± 0.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!