Provenance of inorganic aerosol using single-particle analysis: a case study.

Sci Total Environ

Institute of Methodologies for Environmental Analysis, National Research Council of Italy (IMAA-CNR), 85050 Tito Scalo, Potenza, Italy.

Published: October 2013

A total of 137 samples of airborne particulates with an aerodynamic equivalent diameter of 10 μm or less (PM10) were collected from April 2007 to July 2008 in four different areas (Potenza, Lavello, Viggiano, Matera) of the Basilicata region in southern Italy. A total of approximately 140,000 particles were analysed using a Field Emission Scanning Electron Microscope (FESEM) equipped with an Energy-Dispersive X-ray Spectrometer (EDS). To formulate a hypothesis on the origin of particles, the dataset was numerically reduced using mineralogical criteria. Eight particle groups were established (Silicate, Silica, Carbonate, Sea Salt, Polymineral, Industrial, Sulphur, and Biogenic Particles) among which Silicate, Sulphur and Industrial Particles were found to be the most abundant. Among the Silicate Particles, the alumosilicates were the most commonly occurring particles (mineral and fly ash particles), and the presence of a small metallurgical factory located in the industrial area of Potenza significantly affects the presence of metal particles (mainly Fe-Zn spinels). The anthropogenic pressure exerted by different types of Sulphur-rich (e.g., Na-Ca-Sulphates, S-only) Particles in the other areas is most likely linked to industrial combustion processes, i.e., waste incinerator oil and oil extraction. Significant differences were found in the particulate concentrations and the compositions of samples collected in different seasons as well as during the night and daytime periods. Crustal Particles were the most abundant in spring-summer, and both Sulphur-rich Particles and Industrial Particles increased in autumn-winter. The proportion of latter category of particles increases in the samples collected during the night periods due to weather conditions (atmospheric stability, thermal inversion, etc.). Sulphur-rich Particles were observed to be more abundant during the daytime due to anthropogenic processes (combustion) and solar radiation. In summary, mineralogical and geochemical approaches are fundamental to delineate the human and natural contributions from automated microscopic analyses.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2013.05.075DOI Listing

Publication Analysis

Top Keywords

particles
14
industrial particles
8
particles abundant
8
samples collected
8
sulphur-rich particles
8
industrial
5
provenance inorganic
4
inorganic aerosol
4
aerosol single-particle
4
single-particle analysis
4

Similar Publications

The intelligent identification of wear particles in ferrography is a critical bottleneck that hampers the development and widespread adoption of ferrography technology. To address challenges such as false detection, missed detection of small wear particles, difficulty in distinguishing overlapping and similar abrasions, and handling complex image backgrounds, this paper proposes an algorithm called TCBGY-Net for detecting wear particles in ferrography images. The proposed TCBGY-Net uses YOLOv5s as the backbone network, which is enhanced with several advanced modules to improve detection performance.

View Article and Find Full Text PDF

Urban rail transit systems, represented by subways, have significantly alleviated the traffic pressure brought by urbanization and have addressed issues such as traffic congestion. However, as a commonly used construction method for subway tunnels, shield tunneling inevitably disturbs the surrounding soil, leading to uneven ground surface settlement, which can impact the safety of nearby buildings. Therefore, it is crucial to promptly obtain and predict the ground surface settlement induced by shield tunneling construction to enable safety warnings and evaluations.

View Article and Find Full Text PDF

Land use change can significantly alter the proportion of soil aggregates, thereby influencing aggregate stability and distribution of soil organic carbon (SOC). However, there is minimal research on the variations in the distribution of soil aggregates, aggregate stability, and SOC in soil aggregates following land use change from farmland (FL) to forest and grassland in the Loess Plateau region of China. Select six land use patterns (farmland (FL), abandoned cropland (ACL), Medicago sativa (MS), natural grassland (NG), Picea asperata Mast.

View Article and Find Full Text PDF

Real-time monitoring by interferometric light microscopy of phage suspensions for personalised phage therapy.

Sci Rep

December 2024

Pharmacy Department, Hospices Civils de Lyon, Hôpital E. Herriot, Plateforme FRIPHARM, 69437, Lyon, France.

Phage therapy uses viruses (phages) against antibiotic resistance. Tailoring treatments to specific patient strains requires stocks of various highly concentrated purified phages. It, therefore, faces challenges: titration duration and specificity to a phage/bacteria couple; purification affecting stability; and highly concentrated suspensions tending to aggregate.

View Article and Find Full Text PDF

Ventilation and features of the lung environment dynamically alter modeled intrapulmonary aerosol exposure from inhaled electronic cigarettes.

Sci Rep

December 2024

Division of Pulmonary and Critical Care, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095-1690, USA.

Electronic cigarettes (e-cigs) fundamentally differ from tobacco cigarettes in their generation of liquid-based aerosols. Investigating how e-cig aerosols behave when inhaled into the dynamic environment of the lung is important for understanding vaping-related exposure and toxicity. A ventilated artificial lung model was developed to replicate the ventilatory and environmental features of the human lung and study their impact on the characteristics of inhaled e-cig aerosols from simulated vaping scenarios.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!