During zebrafish development, a gradient of stromal-derived factor 1a (Sdf1a) provides the directional cue that guides the migration of the primordial germ cells (PGCs) to the gonadal tissue. Here we describe a method to produce large numbers of infertile fish by inducing ubiquitous expression of Sdf1a in zebrafish embryos resulting in disruption of the normal PGC migration pattern. A transgenic line of zebrafish, Tg(hsp70:sdf1a-nanos3, EGFP), was generated that expresses Sdf1a under the control of the heat-shock protein 70 (hsp70) promoter and nanos3 3?UTR. To better visualize the PGCs, the Tg(hsp70:sdf1a-nanos3, EGFP) fish were crossed with another transgenic line, Tg(kop:DsRed-nanos3), that expresses DsRed driven by the PGC-specific kop promoter. Heat treatment of the transgenic embryos caused an induction of Sdf1a expression throughout the embryo resulting in the disruption of their normal migration. Optimal embryo survival and disruption of PGC migration was achieved when transgenic embryos at the 4- to 8-cell stage were incubated at 34.5°C for 18 hours. Under these conditions, disruption of PGC migration was observed in 100% of the embryos. Sixty-four adult fish were developed from three separate batches of heat-treated embryos and all were found to be infertile males. When each male was paired with a wild-type female, only unfertilized eggs were produced and histological examination revealed that each of the adult male fish possessed severely under-developed gonads that lacked gametes. The results demonstrate that inducible Sdf1a expression is an efficient and reliable strategy to produce infertile fish. This approach makes it convenient to generate large numbers of infertile adult fish while also providing the capability to maintain a fertile brood stock.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3694954 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0068455 | PLOS |
J Mol Cell Biol
December 2024
Laboratory of Molecular Developmental Biology, State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China.
Proteins without transmembrane domains could be anchored to the cell surface for regulating various biological processes when covalently linked to glycosylphosphatidylinositol (GPI) molecules by the GPI transamidase (GPIT) complex. However, it remains poorly understood whether and how the GPIT complex affects primordial germ cell (PGC) development. In this study, we report the important roles of GPI transamidase in PGC migration and development in zebrafish embryos.
View Article and Find Full Text PDFInt J Biol Macromol
December 2024
Department of Dermatology, the Union Hospital, Fujian Medical University, Fuzhou, Fujian, China. Electronic address:
Previous studies have shown that EPHB4 is also involved in regulating the proliferation, migration, and apoptosis of endothelial cells. In this study, we found a close relationship between EPHB4 and aging. Therefore, in-depth research on the relationship between EPHB4 and aging can help reveal the molecular mechanisms of aging and provide new ideas and methods for developing anti-aging drugs and treating vascular aging-related diseases.
View Article and Find Full Text PDFJ Genet Genomics
November 2024
Laboratory of Molecular Developmental Biology, State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China. Electronic address:
The cell fate of primordial germ cells (PGCs) in zebrafish is pre-determined by maternally deposited germ plasm, which is packaged into ribonucleoprotein complex in oocytes and inherited into PGCs-fated cells in embryos. However, the maternal factors regulating the assembly of germ plasm and PGC development remain poorly understood. In this study, we report that the maternal transcription factor Znf706 regulates the assembly of germ plasm factors into a granule-like structure localized perinuclearly in PGCs during migration.
View Article and Find Full Text PDFEur J Pharmacol
December 2024
Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, 710032, Xi'an, China. Electronic address:
Restrained cell function of relocated bone marrow mesenchymal stem cells (BMSCs) largely impedes the clinical benefits of BMSCs-mediated tissue repair. Exchange protein directly activated by cAMP (Epac), a novel protein discovered in cAMP signaling pathway, has a potential role in regulating cell migration and proliferation by triggering the downstream Rap signaling. However, whether and how Epac may exert effects on BMSCs' bioactivity have less been investigated.
View Article and Find Full Text PDFNat Commun
November 2024
Department of Drug Discovery Medicine, Kyoto University Graduate School of Medicine, Kyoto, 606-8507, Japan.
While prostaglandin E (PGE) is produced in human tumor microenvironment (TME), its role therein remains poorly understood. Here, we examine this issue by comparative single-cell RNA sequencing of immune cells infiltrating human cancers and syngeneic tumors in female mice. PGE receptors EP4 and EP2 are expressed in lymphocytes and myeloid cells, and their expression is associated with the downregulation of oxidative phosphorylation (OXPHOS) and MYC targets, glycolysis and ribosomal proteins (RPs).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!