Lack of Plasma Protein Hemopexin Results in Increased Duodenal Iron Uptake.

PLoS One

Molecular Biotechnology Center, University of Torino, Torino, Italy ; Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy.

Published: October 2017

AI Article Synopsis

  • The study investigates the role of hemopexin in regulating iron levels in the body, especially focusing on its effect on iron absorption and recycling.
  • Hemopexin-null mice exhibited higher iron deposits in their intestines, indicating that the absence of hemopexin increases the uptake of iron by intestinal cells.
  • These findings suggest that hemopexin plays a significant role in maintaining iron homeostasis by influencing iron absorption in the intestines, suggesting potential implications for understanding iron-related disorders.

Article Abstract

Purpose: The body concentration of iron is regulated by a fine equilibrium between absorption and losses of iron. Iron can be absorbed from diet as inorganic iron or as heme. Hemopexin is an acute phase protein that limits iron access to microorganisms. Moreover, it is the plasma protein with the highest binding affinity for heme and thus it mediates heme-iron recycling. Considering its involvement in iron homeostasis, it was postulated that hemopexin may play a role in the physiological absorption of inorganic iron.

Methods And Results: Hemopexin-null mice showed elevated iron deposits in enterocytes, associated with higher duodenal H-Ferritin levels and a significant increase in duodenal expression and activity of heme oxygenase. The expression of heme-iron and inorganic iron transporters was normal. The rate of iron absorption was assessed by measuring the amount of (57)Fe retained in tissues from hemopexin-null and wild-type animals after administration of an oral dose of (57)FeSO4 or of (57)Fe-labelled heme. Higher iron retention in the duodenum of hemopexin-null mice was observed as compared with normal mice. Conversely, iron transfer from enterocytes to liver and bone marrow was unaffected in hemopexin-null mice.

Conclusions: The increased iron level in hemopexin-null duodenum can be accounted for by an increased iron uptake by enterocytes and storage in ferritins. These data indicate that the lack of hemopexin under physiological conditions leads to an enhanced duodenal iron uptake thus providing new insights to our understanding of body iron homeostasis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3694894PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0068146PLOS

Publication Analysis

Top Keywords

iron
16
iron uptake
12
plasma protein
8
duodenal iron
8
inorganic iron
8
iron homeostasis
8
hemopexin-null mice
8
increased iron
8
hemopexin-null
5
lack plasma
4

Similar Publications

One of the biggest public health problems globally is that of iron deficiency anemia. The present research aimed to determine the effect of prebiotics along with iron fortification on iron biomarkers in female anemic rats as some evidence suggests that prebiotics convert increase the solubility of iron, thereby enhancing its absorption. A total of 126 Sprague Dawley rats were fed with sixteen different types of fortified feed containing prebiotics (Inulin + Galacto Oligosaccharides) and Iron Fortificants (Sodium Ferric Ethylenediaminetetraacetate + Ferrous Sulphate).

View Article and Find Full Text PDF

Amidst the ongoing COVID-19 pandemic, the imperative of our time resides in crafting stratagems of utmost precision to confront the relentless SARS-CoV-2 and quell its inexorable proliferation. A paradigm-shifting weapon in this battle lies in the realm of nanoparticles, where the amalgamation of cutting-edge nanochemistry begets a cornucopia of inventive techniques and methodologies designed to thwart the advances of this pernicious pathogen. Nanochemistry, an artful fusion of chemistry and nanoscience, provides a fertile landscape for researchers to craft innovative shields against infection.

View Article and Find Full Text PDF

Background: The impact of iron deficiency on COPD morbidity independent of anemia status is unknown. Understanding the association between iron deficiency, anemia status, and risk of hospitalization in COPD may inform an approach to these comorbidities.

Study Design And Methods: Adults ≥40 years from the Johns Hopkins COPD Precision Medicine Center of Excellence data repository with an outpatient iron profile and 1 year of subsequent follow-up time were included in the study.

View Article and Find Full Text PDF

This work researched the influence and mechanism of CD155 on hepatocellular carcinoma advancement. CD155 expression and its effect on survival of hepatocellular carcinoma patients were analyzed based on the GEPIA2 database. String software predicted the interacting between CD155 and CD96, which was further verified by co-immunoprecipitation experiment.

View Article and Find Full Text PDF

Harmless and efficient nickel enrichment from nickel-containing waste slag using vitrification technology.

Environ Sci Pollut Res Int

January 2025

Qingdao Qingli Environmental Protectionquipmen Co, LTD, Jiaozhou, 266300, China.

With the growing demand for nickel in the stainless steel and battery industries, conventional methods of extracting nickel from ores face challenges such as high production costs and environmental concerns. This study proposes a new process for the recovery of nickel metal and the production of nickel-iron alloys from nickel-bearing scrap. The reduction rates of nickel and iron oxides were investigated by optimizing the roasting temperature, time, and C/O ratio, and the process was optimized using response surface methodology (RSM).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!