Central control of circadian phase in arousal-promoting neurons.

PLoS One

Neuroscience and Behavior Program, University of Massachusetts, Amherst, Massachusetts, United States of America.

Published: February 2014

Cells of the dorsomedial/lateral hypothalamus (DMH/LH) that produce hypocretin (HCRT) promote arousal in part by activation of cells of the locus coeruleus (LC) which express tyrosine hydroxylase (TH). The suprachiasmatic nucleus (SCN) drives endogenous daily rhythms, including those of sleep and wakefulness. These circadian oscillations are generated by a transcriptional-translational feedback loop in which the Period (Per) genes constitute critical components. This cell-autonomous molecular clock operates not only within the SCN but also in neurons of other brain regions. However, the phenotype of such neurons and the nature of the phase controlling signal from the pacemaker are largely unknown. We used dual fluorescent in situ hybridization to assess clock function in vasopressin, HCRT and TH cells of the SCN, DMH/LH and LC, respectively, of male Syrian hamsters. In the first experiment, we found that Per1 expression in HCRT and TH oscillated in animals held in constant darkness with a peak phase that lagged that in AVP cells of the SCN by several hours. In the second experiment, hamsters induced to split their locomotor rhythms by exposure to constant light had asymmetric Per1 expression within cells of the middle SCN at 6 h before activity onset (AO) and in HCRT cells 9 h before and at AO. We did not observe evidence of lateralization of Per1 expression in the LC. We conclude that the SCN communicates circadian phase to HCRT cells via lateralized neural projections, and suggests that Per1 expression in the LC may be regulated by signals of a global or bilateral nature.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3691112PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0067173PLOS

Publication Analysis

Top Keywords

per1 expression
16
hcrt cells
12
circadian phase
8
cells scn
8
cells
7
scn
6
hcrt
5
central control
4
control circadian
4
phase
4

Similar Publications

Hypo-osmotic stress shifts transcription of circadian genes.

Biophys J

January 2025

Dept. of Chemistry and Biochemistry, Worcester Polytechnic Institute, 100 Institute Rd. Worcester, MA 01609. Electronic address:

Cells respond to hypo-osmotic stress by initial swelling followed by intracellular increases in the number of osmolytes and initiation of gene transcription that allow cells to adapt to the stress. Here, we have studied the genes that change expression under mild hypo-osmotic stress for 12 and 24 hours in rat cultured smooth muscle cells (WKO-3M22). We find shifts in the transcription of many genes, several of which are associated with circadian rhythm, such as per1, nr1d1, per2, dbp, and Ciart.

View Article and Find Full Text PDF

Dim blue light at night worsens high-fat diet-induced kidney damage via increasing corticosterone levels and modulating the expression of circadian clock genes.

Ecotoxicol Environ Saf

January 2025

National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, Haidian, Beijing 100193, China. Electronic address:

Obesity is a contributing factor that increases the likelihood of developing chronic kidney disease. In recent years, studies have found that light pollution worldwide promoted obesity, which was known to be a consequence of circadian rhythm disruption. Nevertheless, the impact of light pollution on kidney disease associated with obesity remains mostly unknown, and potential processes have been minimally investigated.

View Article and Find Full Text PDF

Background: Prolonged exposure to LED-light has been associated with impaired sleep quality and pathogenesis of various diseases, including Alzheimer's Disease (AD). Red light therapy has been indicated as a non-invasive way of reducing anxiety, mood and sleep optimization in neurodegenerative disorders but its endogenous mechanisms are insufficiently comprehended. Hence, we assessed the effects of scheduled red-light exposure on clock genes-Bmal1 and Per 1 expression, feacal boli frequency, and anxiety-like responses in prolonged LED-light exposed rats.

View Article and Find Full Text PDF

Targeting macrophage circadian rhythms with microcurrent stimulation to activate cancer immunity through phagocytic defense.

Theranostics

January 2025

Department of Clinical Pharmacokinetics, Faculty of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi Higashi-ku, Fukuoka 812-8582, Japan.

Macrophage phagocytosis plays a role in cancer immunotherapy. The phagocytic activity of macrophages, regulated by circadian clock genes, shows time-dependent variation. Intervening in the circadian clock machinery of macrophages is a potentially novel approach to cancer immunotherapy; however, data on this approach are scarce.

View Article and Find Full Text PDF

Effects of Retinol, Natural Pea Peptide and Antioxidant Blend in a Topical Formulation: In Vitro and Clinical Evidence.

Dermatol Ther (Heidelb)

December 2024

Department of Cell Biology and Physiology, The Neuroscience Center, College of Life Sciences, Brigham Young University, Provo, UT, 84602, USA.

Introduction: Retinol has a long history of treating skin conditions, including photoaging. However, skin irritation with repeated use of retinol is well documented. The present study assessed the effectiveness of a novel topical formulation, referred to as retinol topical formulation (RTF), to improve the quality of skin health.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!