Background And Objectives: Thermophilic bacteria are less studied but important group of microorganisms due to their ability to produce industrial enzymes.

Materials And Methods: In this study, thermophilic bacteria were isolated from hot spring of Tarabalo, India. A bacterium that could tolerate high temperatures was characterized by morphology, biochemistry and sequencing of its 16S rRNA gene. The isolate was screened for protease and amylase activity. Phylogenetic affiliations and G+C content of the isolate was studied.

Results: The bacterium with the ability to tolerate high temperatures was identified as Bacillus sp. both by morphology, biochemistry and sequencing of its 16S rRNA gene. BLAST search analysis of the sequence showed maximum identity with Bacillus amyloliquefaciens (99% similarity). Strain exhibited considerable protease activity. Phylogenetic analysis of the isolate revealed close affiliation with thermophilic Bacillus species. The G+C content was found to be 54.7%.

Conclusion: The study confirmed that the isolated Bacillus sp. to be a true thermophile and could be a source of thermostable protease which can be exploited for pharmaceutical and industrials applications.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3696853PMC

Publication Analysis

Top Keywords

thermophilic bacillus
8
protease activity
8
isolated hot
8
hot spring
8
spring tarabalo
8
thermophilic bacteria
8
tolerate high
8
high temperatures
8
morphology biochemistry
8
biochemistry sequencing
8

Similar Publications

Bacillibactin (BB) is a microbial siderophore produced by Bacillus species. BB is biosynthesized from 2,3-dihydroxybenzoic acid (2,3-DHB), Gly, and L-Thr by nonribosomal peptide synthetase (NRPS) enzymes DhbE, DhbB, and DhbF. The biosynthetic gene cluster (dhb) is also conserved in some strains of thermophilic genera, Geobacillus, Anoxybacillus and Parageobacillus.

View Article and Find Full Text PDF

The synthesis of nucleosides is crucial for pharmaceutical and biotechnological applications, acting as drugs and as essential building blocks for numerous therapeutic agents. However, most enzymes employed in nucleoside biocatalysis are not recycled, possess limited stability, and have strict substrate selection for ribonucleosides or 2'deoxyribonucleosides. We employed 2'-deoxyribonucleoside transferase (NDT) enzymes from thermophilic and psychrophilic bacteria to demonstrate they can be immobilized to enhance specific activity, stability, and recyclability.

View Article and Find Full Text PDF

ADP-inhibited structure of non-catalytic site-depleted FF-ATPase from thermophilic Bacillus sp. PS-3.

Biochim Biophys Acta Bioenerg

January 2025

Department of Molecular Biosciences, Kyoto Sangyo University, Kamigamo-Motoyama, Kita-ku, Kyoto 603-8555, Japan. Electronic address:

The F domain of FF-ATP synthases/ATPases (FF) possesses three catalytic sites on the three αβ interfaces, termed αβ, αβ, and αβ, located mainly on the β subunits. The enzyme also has three non-catalytic ATP-binding sites on the three αβ interfaces, located mainly on the α subunits. When ATP does not bind to the non-catalytic site, FF becomes significantly prone to ADP inhibition, ultimately resulting in the loss of ATPase activity.

View Article and Find Full Text PDF

Metatranscriptomic insights into the mechanism of 'Multiple Qu' utilization in Jian-flavor Baijiu fermentation.

Food Res Int

January 2025

School of Food and Biological Engineering, Hefei University of Technology, No.193 Tunxi Road, Hefei city 230009, Anhui province, PR China. Electronic address:

The unique process of "Multiple-qu fermentation" (MF) is essential for the formation of the Jian-flavor Baijiu, but the mechanisms behind its aroma development remain not fully understood. This study compared the effects of "Single-qu fermentation"(SF) and MF on Baijiu production to elucidate the microbial and metabolic interactions responsible for its distinct aroma. Firstly, significant differences were observed in the microbial communities of the two types of Daqu.

View Article and Find Full Text PDF

sp. THPS1 is a novel strain isolated from a high-temperature hot spring in Thailand, exhibiting distinctive genomic features that enable adaptation to an extreme environment. This study aimed to characterize the genomic and functional attributes of sp.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!