Bee Venom Phospholipase A2, a Good "Chauffeur" for Delivering Tumor Antigen to the MHC I and MHC II Peptide-Loading Compartments of the Dendritic Cells: The Case of NY-ESO-1.

PLoS One

Service d'Ingénierie Moléculaire des Protéines, Institut de Biologie et Technologies de Saclay, Commissariat à l'énergie atomique et aux énergies alternatives, Gif Sur Yvette, France ; Service de Biochimie et de Toxicologie nucléaire, Institut de Biologie Environnementale et Biotechnologie, Commissariat à l'énergie atomique et aux énergies alternatives, Bagnols sur Cèze, France.

Published: October 2017

AI Article Synopsis

  • Bee venom phospholipase A2 (bvPLA2) is an enzyme that can modify phospholipids, but a mutated version (bvPLA2H34Q) lacks enzyme activity and is effective as a membrane anchor.
  • A fusion protein, PNY, combining bvPLA2m and the NY-ESO-1 antigen, was engineered to enhance the binding and uptake of the antigen by dendritic cells, facilitating better immune responses.
  • The study found that bvPLA2m improves the cross-presentation of specific peptides to T-cells, showing potential for developing more efficient dendritic cell-based vaccines against conditions like melanoma.

Article Abstract

Bee venom phospholipase A2 (bvPLA2) is a small, 15kDa enzyme which hydrolyses many phospholipids through interfacial binding. The mutated bvPLA2H34Q (bvPLA2m), in which histidine-34 is replaced by glutamine, is not catalytically active. This protein has been shown to be a suitable membrane anchor and has been suggested as a suitable tumor-antigen vector for the development of novel dendritic cell-based vaccines. To confirm this feature, in this study the fusion protein PNY, composed of NY-ESO-1(NY(s)) fused to the C-terminus of bvPLA2m, was engineered. bvPLA2m enhanced the binding of NY(s) to the membrane of human monocyte-derived dendritic cells (DCs) and, once taken up by the cells, the antigen fused to the vector was directed to both MHC I and MHC II peptide-loading compartments. bvPLA2m was shown to increase the cross-presentation of the NY(s)-derived, restricted HLA-A*02 peptide, NY-ESO-1157-165(NY157-165), at the T1 cell surface. DCs loaded with the fusion protein induced cross-priming of NY(s)-specific CD8 + T-cells with greater efficiency than DCs loaded with NY(s). Sixty-five percent of these NY(s)-specific CD8+ T-cell lines could also be activated with the DCs pulsed with the peptide, NY157-165. Of these CD8+ T-cell lines, two were able to recognize the human melanoma cell line, SK-MEL-37, in a context of HLA-A*02. Only a small number of bvPLA2m CD8+ T-cell lines were induced, indicating the low immunogenicity of the protein. It was concluded that bvPLA2m can be used as a membrane-binding vector to promote MHC class II peptide presentation and MHC class I peptide cross-presentation. Such a system can, therefore, be tested for the preparation of cell-based vaccines.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3688974PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0067645PLOS

Publication Analysis

Top Keywords

cd8+ t-cell
12
t-cell lines
12
bee venom
8
venom phospholipase
8
mhc mhc
8
mhc peptide-loading
8
peptide-loading compartments
8
dendritic cells
8
cell-based vaccines
8
fusion protein
8

Similar Publications

Introduction: The COVID-19 pandemic has become a global health crisis, eliciting varying severity in infected individuals. This study aimed to explore the immune profiles between moderate and severe COVID-19 patients experiencing a cytokine storm and their association with mortality. This study highlights the role of PD-1/PD-L1 and the TIGIT/CD226/CD155/CD112 pathways in COVID-19 patients.

View Article and Find Full Text PDF

Type 1 Diabetes Mellitus (T1D) is an autoimmune disease caused by unremitting immune attack on pancreas insulin-producing beta cells. Persistence of the autoimmune response is mediated by TCF1+ Ly108+ progenitor CD8+ T (T ) cells, a stem-like population that gives rise to exhausted effectors with limited cytolytic function in chronic virus infection and cancer. What paradoxically drives T conversion to highly cytolytic effectors in T1D, however, remains unclear.

View Article and Find Full Text PDF

Introduction: T-lymphopenia (TLP) is a frequently observed condition in cancer patients, often exacerbated by conventional chemo/radiotherapy, which impairs the efficacy of subsequent immune checkpoint blockade (ICB) therapy. This study aimed to understand the impact of TLP on ICB responsiveness and explore potential therapeutic strategies to enhance antitumor immunity.

Methods: To investigate ICB responsiveness depending on the severity of TLP, first, we established TLP mouse models that mimic clinically observed mild and severe TLP through thymectomy and anti-Thy1-induced peripheral T cell depletion.

View Article and Find Full Text PDF

Background: T cell mediated immunity is reported to play a pathogenic role in cardiac allograft vasculopathy (CAV) in heart transplant (HTx) patients. However, peripheral blood CD8 T cells have not been previously characterized in CAV. This study aimed to identify potentially pathogenic circulating CD8 T cell populations in high grade CAV patients using cellular indexing of transcriptomes and epitopes by sequencing (CITE-seq).

View Article and Find Full Text PDF

Monoclonal antibodies enhance innate immunity, while bispecific T cell engager antibodies redirect adaptive T cell immunity. To stimulate both innate and adaptive mechanisms, we created a bifunctional eCD16A/anti-CD3-BFP adapter protein for combined use with clinically approved monoclonal IgG1 antibodies. The adaptor protein contains the extracellular domain of the human CD16A high-affinity variant, which binds the Fc domain of IgG1 antibodies, and an anti-human CD3 single-chain variable fragment that redirects T cell cytotoxicity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!