Background: Genetic mosaic techniques have been used to visualize and/or genetically modify a neuronal subpopulation within complex neural circuits in various animals. Neural populations available for mosaic analysis, however, are limited in the vertebrate brain.

Methodology/principal Findings: To establish methodology to genetically manipulate neural circuits in medaka, we first created two transgenic (Tg) medaka lines, Tg (HSP:Cre) and Tg (HuC:loxP-DsRed-loxP-GFP). We confirmed medaka HuC promoter-derived expression of the reporter gene in juvenile medaka whole brain, and in neuronal precursor cells in the adult brain. We then demonstrated that stochastic recombination can be induced by micro-injection of Cre mRNA into Tg (HuC:loxP-DsRed-loxP-GFP) embryos at the 1-cell stage, which allowed us to visualize some subpopulations of GFP-positive cells in compartmentalized regions of the telencephalon in the adult medaka brain. This finding suggested that the distribution of clonally-related cells derived from single or a few progenitor cells was restricted to a compartmentalized region. Heat treatment of Tg(HSP:Cre x HuC:loxP-DsRed-loxP-GFP) embryos (0-1 day post fertilization [dpf]) in a thermalcycler (39°C) led to Cre/loxP recombination in the whole brain. The recombination efficiency was notably low when using 2-3 dpf embyos compared with 0-1 dpf embryos, indicating the possibility of stage-dependent sensitivity of heat-inducible recombination. Finally, using an infrared laser-evoked gene operator (IR-LEGO) system, heat shock induced in a micro area in the developing brains led to visualization of clonally-related cells in both juvenile and adult medaka fish.

Conclusions/significance: We established a noninvasive method to control Cre/loxP site-specific recombination in the developing nervous system in medaka fish. This method will broaden the neural population available for mosaic analyses and allow for lineage tracing of the vertebrate nervous system in both juvenile and adult stages.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3692484PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0066597PLOS

Publication Analysis

Top Keywords

cre/loxp site-specific
8
site-specific recombination
8
recombination developing
8
medaka
8
medaka fish
8
neural circuits
8
medaka brain
8
hucloxp-dsred-loxp-gfp embryos
8
adult medaka
8
clonally-related cells
8

Similar Publications

The Cre/loxP-Based Recombinant HBV cccDNA System In Vitro and In Vivo.

Methods Mol Biol

July 2024

Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Fudan University, Shanghai, China.

Covalently closed circular DNA (cccDNA) exists as a stable episomal minichromosome in the nucleus of hepatocytes and is responsible for hepatitis B virus (HBV) persistence. We recently reported a technique involving recombinant cccDNA (rcccDNA) of HBV by site-specific DNA recombination. A floxed monomeric HBV genome was engineered into a precursor plasmid (prcccDNA) which was excised via Cre/loxP-mediated DNA recombination to form a 3.

View Article and Find Full Text PDF

Dynamics in Cre-loxP site-specific recombination.

Curr Opin Struct Biol

October 2024

Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, USA.

Cre recombinase is a phage-derived enzyme that has found utility for precise manipulation of DNA sequences. Cre recognizes and recombines pairs of loxP sequences characterized by an inverted repeat and asymmetric spacer. Cre cleaves and religates its DNA targets such that error-prone repair pathways are not required to generate intact DNA products.

View Article and Find Full Text PDF

N-methyl-D-aspartate Receptor Subunits 2A and 2B Mediate Connexins and Pannexins in the Trigeminal Ganglion Involved in Orofacial Inflammatory Allodynia during Temporomandibular Joint Inflammation.

Mol Neurobiol

July 2024

State Key Laboratory of Oral Diseases & National Center for Stomatology &, National Clinical Research Center for Oral Disease& West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China.

Temporomandibular joint osteoarthritis (TMJOA) is a severe form of temporomandibular joint disorders (TMD), and orofacial inflammatory allodynia is one of its common symptoms which lacks effective treatment. N-methyl-D-aspartate receptor (NMDAR), particularly its subtypes GluN2A and GluN2B, along with gap junctions (GJs), are key players in the mediation of inflammatory pain. However, the precise regulatory mechanisms of GluN2A, GluN2B, and GJs in orofacial inflammatory allodynia during TMJ inflammation still remain unclear.

View Article and Find Full Text PDF

Translational research on the Cre/loxP recombination system focuses on enhancing its specificity by modifying Cre/DNA interactions. Despite extensive efforts, the exact mechanisms governing Cre discrimination between substrates remains elusive. Cre recognizes 13 bp inverted repeats, initiating recombination in the 8 bp spacer region.

View Article and Find Full Text PDF

Targeted insertion of conditional expression cassettes into the mouse genome using the modified i-PITT.

BMC Genomics

June 2024

Department of Molecular Life Science, Division of Basic Medical Science and Molecular Medicine, Tokai University School of Medicine, Kanagawa, Japan.

Background: Transgenic (Tg) mice are widely used in biomedical research, and they are typically generated by injecting transgenic DNA cassettes into pronuclei of one-cell stage zygotes. Such animals often show unreliable expression of the transgenic DNA, one of the major reasons for which is random insertion of the transgenes. We previously developed a method called "pronuclear injection-based targeted transgenesis" (PITT), in which DNA constructs are directed to insert at pre-designated genomic loci.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!