Theoretical design of strong neutral radical-boron adducts: trisubstituted boranes as potential radical scavengers.

Chemphyschem

UPMC Univ Paris 06, UMR 7616, Laboratoire de Chimie Théorique, case courrier 137, 4, place Jussieu, 75005 Paris, France.

Published: August 2013

The conditions of formation of strong two-center one-electron bonds in neutral compounds are discussed. Both molecular orbital and valence bond analyses show that good candidates are adducts of radicals ˙AR3 (A=C, Si, Ge) of low ionization energy (IE) with boranes BX3 of high electron affinity (EA). This is confirmed by ab initio calculations. The bond energy of adducts of B(CF3)3 with various radicals ranges from 18 kcal mol(-1) for ˙CH3 to approximately 40 kcal mol(-1) for Me3Si˙, and a clear correlation with IE-EA difference is found. This allows one to expect B(CF3)3, among other fluoroboranes, to be an efficient radical scavenger.

Download full-text PDF

Source
http://dx.doi.org/10.1002/cphc.201300361DOI Listing

Publication Analysis

Top Keywords

kcal mol-1
8
theoretical design
4
design strong
4
strong neutral
4
neutral radical-boron
4
radical-boron adducts
4
adducts trisubstituted
4
trisubstituted boranes
4
boranes potential
4
potential radical
4

Similar Publications

Traditionally, Bidens pilosa L. is an edible herb utilized for various ailments. The study accomplished a complete analysis of B.

View Article and Find Full Text PDF

Beyond Fang's fury: a computational study of the enzyme-membrane interaction and catalytic pathway of the snake venom phospholipase A toxin.

Chem Sci

January 2025

LAQV/Requimte, Departamento de Química e Bioquímica, Faculdade de Ciências da Universidade do Porto Rua do Campo Alegre, s/n 4169-007 Porto Portugal

Snake venom-secreted phospholipases A (svPLAs) are critical, highly toxic enzymes present in almost all snake venoms. Upon snakebite envenomation, svPLAs hydrolyze cell membrane phospholipids and induce pathological effects such as paralysis, myonecrosis, inflammation, or pain. Despite its central importance in envenomation, the chemical mechanism of svPLAs is poorly understood, with detrimental consequences for the design of small-molecule snakebite antidotes, which is highly undesirable given the gravity of the epidemiological data that ranks snakebite as the deadliest neglected tropical disease.

View Article and Find Full Text PDF

A one-pot, acid-, base-, and metal-free, multicomponent strategy has been developed to synthesize spiro thiochromene-oxindole derivatives as potential anti-inflammatory agents. The synthesized compounds were screened for their anti-inflammatory activity by inhibiting heat-induced Bovine Serum Albumin (BSA) denaturation assay, revealing moderate to good efficacy. Compounds 4e, 4k, and 4h exhibited the highest activity, inhibiting BSA denaturation by 90.

View Article and Find Full Text PDF

A hybrid B3LYP version of the Density Functional Theory was applied in full geometry optimization followed by vibrational analysis of mustard-type molecules acting as antiblood cancer agents: melphalan and bendamustine. All calculations were performed with water as a solvent. In addition to the ground-state properties (dipole moment, quadrupole moment, dipole polarizability, solvated surface and volume, zero-point vibration energy, total entropic term), properties that characterize adiabatic redox processes (ionization energy, electron affinity, molecular electronegativity, chemical hardness, electrophilicity index) together with the absolute oxidation and reduction potentials were evaluated.

View Article and Find Full Text PDF

The development of machine-learning (ML) potentials offers significant accuracy improvements compared to molecular mechanics (MM) because of the inclusion of quantum-mechanical effects in molecular interactions. However, ML simulations are several times more computationally demanding than MM simulations, so there is a trade-off between speed and accuracy. One possible compromise are hybrid machine learning/molecular mechanics (ML/MM) approaches with mechanical embedding that treat the intramolecular interactions of the ligand at the ML level and the protein-ligand interactions at the MM level.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!