Since 1998, 9 of the 26 serotypes of bluetongue virus (BTV) have spread throughout Europe, and serotype 8 has suddenly emerged in northern Europe, causing considerable economic losses, direct (mortality and morbidity) but also indirect, due to restriction in animal movements. Therefore, many new types of vaccines, particularly subunit vaccines, with improved safety and efficacy for a broad range of BTV serotypes are currently being developed by different laboratories. Here we exploited a reverse genetics-based replication-deficient BTV serotype 1 (BTV-1) (disabled infectious single cycle [DISC]) strain to generate a series of DISC vaccine strains. Cattle and sheep were vaccinated with these viruses either singly or in cocktail form as a multivalent vaccine candidate. All vaccinated animals were seroconverted and developed neutralizing antibody responses to their respective serotypes. After challenge with the virulent strains at 21 days postvaccination, vaccinated animals showed neither any clinical reaction nor viremia. Further, there was no interference with protection with a multivalent preparation of six distinct DISC viruses. These data indicate that a very-rapid-response vaccine could be developed based on which serotypes are circulating in the population at the time of an outbreak.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3754119PMC
http://dx.doi.org/10.1128/JVI.01514-13DOI Listing

Publication Analysis

Top Keywords

bluetongue virus
8
cattle sheep
8
vaccinated animals
8
rapid generation
4
generation replication-deficient
4
replication-deficient monovalent
4
monovalent multivalent
4
multivalent vaccines
4
vaccines bluetongue
4
virus protection
4

Similar Publications

Bluetongue virus (BTV) has emerged as a significant concern in Oman, affecting various animal species, including camels. This cross-sectional study aimed to assess the seroprevalence of BTV in camels and explore the associated risk factors within the northern region of Oman. Between October 2016 and March 2017, 439 serum samples and 100 blood samples were collected from camels in five governorates.

View Article and Find Full Text PDF

Peste-des-petits-ruminants (PPR) is primarily a disease of small ruminants caused by peste-des-petits-ruminants virus (PPRV; , ), formerly the small ruminant morbillivirus. PPRV can cause significant morbidity and mortality in small ruminants and a significant economic impact. Conventional reverse-transcription PCR (RT-PCR), and probe-based and SYBR Green-based RT quantitative real-time PCR (RT-qPCR), are employed for the molecular detection of PPRV.

View Article and Find Full Text PDF

Bluetongue virus (BTV) and epizootic hemorrhagic disease virus (EHDV) are vector-borne orbiviruses that pose an emerging threat to livestock, including cattle and sheep. This review summarizes the global distribution, genetic diversity, and key factors driving their spread along with the existing knowledge gaps and recommendations to mitigate their impact. Both viruses cause hemorrhagic disease in susceptible ruminants and are commonly reported in tropical and subtropical regions including North America, Asia, Africa, Oceania, and some parts of Europe.

View Article and Find Full Text PDF

Bluetongue (BT) is considered endemic in the southern states of India, with sporadic incidences reported from the northern, western and central parts of India. However, the eastern and north-eastern states of India have not experienced active disease so far. In the recent past, an extensive sero-epidemiological investigation was carried out in the eastern and north-eastern Indian states.

View Article and Find Full Text PDF

Double-stranded RNA orbivirus disrupts the DNA-sensing cGAS-sting axis to prevent type I IFN induction.

Cell Mol Life Sci

January 2025

Centro de Investigación en Sanidad Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Consejo Superior de Investigaciones Científicas (CISA-INIA-CSIC), Valdeolmos, Madrid, Spain.

Cyclic GMP-AMP synthase (cGAS) is a DNA sensing cellular receptor that induces IFN-I transcription in response to pathogen and host derived cytosolic DNA and can limit the replication of some RNA viruses. Some viruses have nonetheless evolved mechanisms to antagonize cGAS sensing. In this study, we evaluated the interaction between Bluetongue virus (BTV), the prototypical dsRNA virus of the Orbivirus genus and the Sedoreoviridae family, and cGAS.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!