Caspase activation as a versatile assay platform for detection of cytotoxic bacterial toxins.

J Clin Microbiol

Vaccines Basic Research, Merck Research Laboratories, West Point, Pennsylvania, USA.

Published: September 2013

Pathogenic bacteria produce several virulence factors that help them establish infection in permissive hosts. Bacterial toxins are a major class of virulence factors and hence are attractive therapeutic targets for vaccine development. Here, we describe the development of a rapid, sensitive, and high-throughput assay that can be used as a versatile platform to measure the activities of bacterial toxins. We have exploited the ability of these toxins to cause cell death via apoptosis of sensitive cultured cell lines as a readout for measuring toxin activity. Caspases (cysteine-aspartic proteases) are induced early in the apoptotic pathway, and so we used their induction to measure the activities of Clostridium difficile toxins A (TcdA) and B (TcdB) and binary toxin (CDTa-CDTb), Corynebacterium diphtheriae toxin (DT), and Pseudomonas aeruginosa exotoxin A (PEA). Caspase induction in the cell lines, upon exposure to toxins, was optimized by toxin concentration and intoxication time, and the specificity of caspase activity was established using a genetically mutated toxin and a pan-caspase inhibitor. In addition, we demonstrate the utility of the caspase assay for measuring toxin potency, as well as neutralizing antibody (NAb) activity against C. difficile toxins. Furthermore, the caspase assay showed excellent correlation with the filamentous actin (F-actin) polymerization assay for measuring TcdA and TcdB neutralization titers upon vaccination of hamsters. These results demonstrate that the detection of caspase induction due to toxin exposure using a chemiluminescence readout can support potency and clinical immunogenicity testing for bacterial toxin vaccine candidates in development.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3754665PMC
http://dx.doi.org/10.1128/JCM.01161-13DOI Listing

Publication Analysis

Top Keywords

bacterial toxins
12
virulence factors
8
measure activities
8
cell lines
8
toxin
8
measuring toxin
8
difficile toxins
8
tcda tcdb
8
caspase induction
8
caspase assay
8

Similar Publications

Specialized killing across the domains of life by the type VI secretion systems of Pseudomonas aeruginosa.

Biochem J

January 2025

Michael DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, ON, L8S 4K1, Canada.

Type VI secretion systems (T6SSs) are widespread bacterial protein secretion machines that inject toxic effector proteins into nearby cells, thus facilitating both bacterial competition and virulence. Pseudomonas aeruginosa encodes three evolutionarily distinct T6SSs that each export a unique repertoire of effectors. Owing to its genetic tractability, P.

View Article and Find Full Text PDF

Enteropathogenic Escherichia coli (EPEC) is a significant bacterial pathogen that causes infantile diarrhea, particularly in low- and middle-income countries. The lack of a reliable diagnostic method greatly contributes to the increased occurrence and severity of the disease. This study aimed at developing of a cost-effective, rapid, and efficient immunodiagnostic assay for detecting EPEC infection.

View Article and Find Full Text PDF

Shiga toxin-producing Escherichia coli (STEC) is one of the major pathogens responsible for severe foodborne infections, and the common serotypes include E. coli O157, O26, O45, O103, O111, O121, and O145. Vaccination has the potential to prevent STEC infections, but no licensed vaccines are available to provide protection against multiple STEC infections.

View Article and Find Full Text PDF

IRF1 cooperates with ISGF3 or GAF to form innate immune de novo enhancers in macrophages.

Sci Signal

January 2025

Department of Microbiology, Immunology and Molecular Genetics, UCLA, Los Angeles, CA, USA.

Macrophages exposed to immune stimuli reprogram their epigenomes to alter their subsequent functions. Exposure to bacterial lipopolysaccharide (LPS) causes widespread nucleosome remodeling and the formation of thousands of de novo enhancers. We dissected the regulatory logic by which the network of interferon regulatory factors (IRFs) induces the opening of chromatin and the formation of de novo enhancers.

View Article and Find Full Text PDF

Background: Cactus contains dietary fiber and minerals and is expected to have preventive effects against diabetes, arteriosclerosis, and other diseases. Additionally, cactus intake induces the production of short-chain fatty acids derived from the gut microbiota, which might influence immune functions. In this study, we examined the effects of a cactus (: NC)-supplemented diet on lipopolysaccharide (LPS)-induced immune responses and intestinal barrier function.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!