Hantaviruses are emerging human pathogens. They induce an unusually strong antiviral response of human HLA class I (HLA-I) restricted CD8⁺ T cells that may contribute to tissue damage and hantavirus-associated disease. In this study, we analyzed possible hantaviral mechanisms that enhance the HLA-I antigen presentation machinery. Upon hantavirus infection of various human and primate cell lines, we observed transactivation of promoters controlling classical HLA molecules. Hantavirus-induced HLA-I upregulation required proteasomal activity and was associated with increased TAP expression. Intriguingly, human DCs acquired the capacity to cross-present antigen upon hantavirus infection. Furthermore, knockdown of TIR domain containing adaptor inducing IFN-β or retinoic acid inducible gene I abolished hantavirus-driven HLA-I induction. In contrast, MyD88-dependent viral sensors were not involved in HLA-I induction. Our results show that hantaviruses strongly boost the HLA-I antigen presentation machinery by mechanisms that are dependent on both retinoic acid inducible gene I and TIR domain containing adaptor inducing IFN-β.

Download full-text PDF

Source
http://dx.doi.org/10.1002/eji.201243066DOI Listing

Publication Analysis

Top Keywords

antigen presentation
12
hantaviral mechanisms
8
hla class
8
hla-i antigen
8
presentation machinery
8
hantavirus infection
8
tir domain
8
domain adaptor
8
adaptor inducing
8
inducing ifn-β
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!