It is suggested that intracellular tau protein (τ), when released extracellularly upon neuron degeneration, could evoke direct toxic effects on the cholinergic neurotransmitter system through muscarinic receptors and thus contribute to the pathogenesis of Alzheimer's disease. In this study, we evaluated the in vitro effects of six naturally occurring monomeric τ isoforms on rat hippocampal synaptosomal choline transporters CHT1 (large transmembrane proteins associated with high-affinity choline transport and vulnerable to actions of amyloid β peptides (Aβ) applied in vitro or in vivo). Some τ isoforms at nM concentrations inhibited choline transport in a dose- and time-dependent saturable manner (352 = 441 > 410 = 383 > 381 = 412) and effects were associated with changes in the Michaelis constant rather than in maximal velocity. Moreover, the actions of τ 352/441 were not influenced by previous depolarisation of synaptosomes or by previous depletion of membrane cholesterol. Specific binding of [3H]hemicholinium-3 was not significantly altered by τ 352/441 at higher nM concentrations. Results of in vitro tests on CHT1 transporters from cholesterol-depleted synaptosomes supported interactions between Aβ 1-40 and τ 352. In addition, we developed surface plasmon resonance biosensors to monitor complexes of Aβ 1-42 and τ 352 using a sandwich detection format. It seems, therefore, that protein τ, similar to Aβ peptides, can contribute to the pathogenesis of Alzheimer's disease through its actions on CHT1 transporters. However, the interaction mechanisms are quite different (τ probably exerts its effects through direct interactions of microtubule binding repeats with extracellular portions of the CHT1 protein without influencing the choline recognition site, Aβ rather through lipid rafts in the surrounding membranes). An N-terminal insert of τ is not necessary but the N-terminal projection domain plays a role. The developed biosensor will be used to detect Aβ-τ complexes in cerebrospinal fluid in order to evaluate them as prospective biomarkers of Alzheimer's disease.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11064-013-1101-5DOI Listing

Publication Analysis

Top Keywords

alzheimer's disease
12
rat hippocampal
8
choline transporters
8
transporters cht1
8
contribute pathogenesis
8
pathogenesis alzheimer's
8
choline transport
8
cht1 transporters
8
effects
5
choline
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!