The Primitive Thylakoid-Less Cyanobacterium Gloeobacter Is a Common Rock-Dwelling Organism.

PLoS One

Institute of Botany ASCR, Centre for Phycology, Třeboň, Czech Republic ; Department of Botany, Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic.

Published: October 2017

Cyanobacteria are an ancient group of photosynthetic prokaryotes, which are significant in biogeochemical cycles. The most primitive among living cyanobacteria, Gloeobacter violaceus, shows a unique ancestral cell organization with a complete absence of inner membranes (thylakoids) and an uncommon structure of the photosynthetic apparatus. Numerous phylogenetic papers proved its basal position among all of the organisms and organelles capable of plant-like photosynthesis (i.e., cyanobacteria, chloroplasts of algae and plants). Hence, G. violaceus has become one of the key species in evolutionary study of photosynthetic life. It also numbers among the most widely used organisms in experimental photosynthesis research. Except for a few related culture isolates, there has been little data on the actual biology of Gloeobacter, being relegated to an "evolutionary curiosity" with an enigmatic identity. Here we show that members of the genus Gloeobacter probably are common rock-dwelling cyanobacteria. On the basis of morphological, ultrastructural, pigment, and phylogenetic comparisons of available Gloeobacter strains, as well as on the basis of three new independent isolates and historical type specimen, we have produced strong evidence as to the close relationship of Gloeobacter to a long known rock-dwelling cyanobacterial morphospecies Aphanothece caldariorum. Our results bring new clues to solving the 40 year old puzzle of the true biological identity of Gloeobacter violaceus, a model organism with a high value in several biological disciplines. A probable broader distribution of Gloeobacter in common wet-rock habitats worldwide is suggested by our data, and its ecological meaning is discussed taking into consideration the background of cyanobacterial evolution. We provide observations of previously unknown genetic variability and phenotypic plasticity, which we expect to be utilized by experimental and evolutionary researchers worldwide.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3688883PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0066323PLOS

Publication Analysis

Top Keywords

gloeobacter common
12
gloeobacter
8
common rock-dwelling
8
gloeobacter violaceus
8
primitive thylakoid-less
4
thylakoid-less cyanobacterium
4
cyanobacterium gloeobacter
4
rock-dwelling organism
4
cyanobacteria
4
organism cyanobacteria
4

Similar Publications

Thylakoid-free cyanobacteria are thought to preserve ancestral traits of early-evolving organisms capable of oxygenic photosynthesis. However, and until recently, photosynthesis studies in thylakoid-free cyanobacteria were only possible in the model strain . Here, we report the isolation, biochemical characterization, cryo-EM structure, and phylogenetic analysis of photosystem I from a newly-discovered thylakoid-free cyanobacterium, , a distant relative of the genus .

View Article and Find Full Text PDF

The pathways for synthesizing tetrapyrroles, including heme and chlorophyll, are well-conserved among organisms, despite the divergence of several enzymes in these pathways. Protoporphyrinogen IX oxidase (PPOX), which catalyzes the last common step of the heme and chlorophyll biosynthesis pathways, is encoded by three phylogenetically-unrelated genes, hemY, hemG and hemJ. All three types of homologues are present in the cyanobacterial phylum, showing a mosaic phylogenetic distribution.

View Article and Find Full Text PDF

Only two complete genomes of the cyanobacterial genus Gloeobacter from two very different regions of the world currently exist. Here, we present the complete genome sequence of a third member of the genus isolated from a waterfall cave in Mexico. Analysis of the average nucleotide identities (ANIs) between published Gloeobacter genomes revealed that the complete genome of this new member is only 92.

View Article and Find Full Text PDF

Common binding sites for cholesterol and neurosteroids on a pentameric ligand-gated ion channel.

Biochim Biophys Acta Mol Cell Biol Lipids

February 2019

Department of Anesthesiology, Washington University in St Louis, 660 S Euclid Ave, St Louis, MO 63110, USA; Taylor Family Institute for Innovative Psychiatric Research, Washington University in St Louis, 660 S Euclid Ave, St Louis, MO 63110, USA; Department of Developmental Biology, Washington University in St Louis, 660 S Euclid Ave, St Louis, MO 63110, USA. Electronic address:

Cholesterol is an essential component of cell membranes, and is required for mammalian pentameric ligand-gated ion channel (pLGIC) function. Computational studies suggest direct interactions between cholesterol and pLGICs but experimental evidence identifying specific binding sites is limited. In this study, we mapped cholesterol binding to Gloeobacter ligand-gated ion channel (GLIC), a model pLGIC chosen for its high level of expression, existing crystal structure, and previous use as a prototypic pLGIC.

View Article and Find Full Text PDF

This study describes microbial community compositions, and various cold-responsive stress genes, encompassing cold-induced proteins (CIPs) and cold-associated general stress-responsive proteins (CASPs) in selected Antarctic lake water, sediment, and soil metagenomes. Overall, Proteobacteria and Bacteroidetes were the major taxa in all metagenomes. and were highly abundant in waters, while , , and were dominant in the soil and lake sediment metagenomes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!