Dinoroseobacter shibae, a member of the Roseobacter clade abundant in marine environments, is characterized by a pronounced pleomorphism. Cell shapes range from variable-sized ovoid rods to long filaments with a high copy number of chromosomes. Time-lapse microscopy shows cells dividing either by binary fission or by budding from the cell poles. Here we demonstrate that this morphological heterogeneity is induced by quorum sensing (QS). D. shibae utilizes three acylated homoserine lactone (AHL) synthases (luxI1-3) to produce AHLs with unsaturated C18 side chains. A ΔluxI1-knockout strain completely lacking AHL biosynthesis was uniform in morphology and divided by binary fission only. Transcriptome analysis revealed that expression of genes responsible for control of cell division was reduced in this strain, providing the link between QS and the observed phenotype. In addition, flagellar biosynthesis and type IV secretion system (T4SS) were downregulated. The wild-type phenotype and gene expression could be restored through addition of synthetic C18-AHLs. Their effectiveness was dependent on the number of double bonds in the acyl side chain and the regulated trait. The wild-type expression level of T4SS genes was fully restored even by an AHL with a saturated C18 side chain that has not been detected in D. shibae. QS induces phenotypic individualization of D. shibae cells rather than coordinating the population. This strategy might be beneficial in unpredictably changing environments, for example, during algal blooms when resource competition and grazing exert fluctuating selective pressures. A specific response towards non-native AHLs might provide D. shibae with the capacity for complex interspecies communication.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3834844PMC
http://dx.doi.org/10.1038/ismej.2013.107DOI Listing

Publication Analysis

Top Keywords

quorum sensing
8
cell division
8
dinoroseobacter shibae
8
binary fission
8
c18 side
8
side chain
8
shibae
6
talk quorum
4
sensing induces
4
induces individual
4

Similar Publications

Genome Insights into Beneficial Microbial Strains Composing SIMBA Microbial Consortia Applied as Biofertilizers for Maize, Wheat and Tomato.

Microorganisms

December 2024

Department for Sustainability, Italian National Agency for New Technologies, Energy and Sustainable Economic Development, ENEA Casaccia Research Center, 00123 Rome, RM, Italy.

For the safe use of microbiome-based solutions in agriculture, the genome sequencing of strains composing the inoculum is mandatory to avoid the spread of virulence and multidrug resistance genes carried by them through horizontal gene transfer to other bacteria in the environment. Moreover, the annotated genomes can enable the design of specific primers to trace the inoculum into the soil and provide insights into the molecular and genetic mechanisms of plant growth promotion and biocontrol activity. In the present work, the genome sequences of some members of beneficial microbial consortia that have previously been tested in greenhouse and field trials as promising biofertilizers for maize, tomato and wheat crops have been determined.

View Article and Find Full Text PDF

is an aerobic, Gram-negative bacterium that is responsible for many plant diseases. The bacterium is the causal agent of Pierce's disease in grapes and is also responsible for citrus variegated chlorosis, peach phony disease, olive quick decline syndrome and leaf scorches of various species. The production of biofilm is intrinsically linked with persistence and transmission in .

View Article and Find Full Text PDF

Transcriptome Analysis Reveals the Mechanism of Y0-C10-HSL on Biofilm Formation and Motility of .

Pharmaceuticals (Basel)

December 2024

School of Biological & Pharmaceutical Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China.

() is a type of pathogen that takes advantage of opportunities to infect and form biofilm during infection. Inhibiting biofilm formation is a promising approach for the treatment of biofilm-related infections. Here, Y0-C10-HSL (N-cyclopentyl-n-decanamide) was designed, synthesized, and tested for its effect on biofilm formation, motility, and the () survival assay.

View Article and Find Full Text PDF

Effects of Several Bile Acids on the Production of Virulence Factors by .

Life (Basel)

December 2024

Bacterial Communication and Antimicrobial Strategies Research Unit, University of Rouen Normandy, IUT, 55 Rue Saint Germain, 27000 Evreux, France.

The presence of bile acids in the cystic fibrosis patient's lungs contributes to an increase in the inflammatory response, in the dominance of pathogens, as well as in the decline in lung function, increasing morbidity. The aim of this study is to determine the effects of exposure of to primary and secondary bile acids on the production of several virulence factors which are involved in its pathogenic power. The presence of bile acids in the bacterial culture medium had no effect on growth up to a concentration of 1 mM.

View Article and Find Full Text PDF

Infective endocarditis (IE) is a life-threatening condition with increasing global incidence, primarily caused by , especially methicillin-resistant strains (MRSA). Biofilm formation by is a critical factor in pathogenesis, contributing to antimicrobial resistance and complicating the treatment of infections involving prosthetic valves and cardiovascular devices. Biofilms provide a protective matrix for MRSA, shielding it from antibiotics and host immune defenses, leading to persistent infections and increased complications, particularly in cases involving prosthetic materials.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!