Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Objective: To evaluate the validity of multi-institutional electronic health record (EHR) data sharing for surveillance and study of childhood obesity.
Methods: We conducted a non-concurrent cohort study of 528,340 children with outpatient visits to six pediatric academic medical centers during 2007-08, with sufficient data in the EHR for body mass index (BMI) assessment. EHR data were compared with data from the 2007-08 National Health and Nutrition Examination Survey (NHANES).
Results: Among children 2-17 years, BMI was evaluable for 1,398,655 visits (56%). The EHR dataset contained over 6,000 BMI measurements per month of age up to 16 years, yielding precise estimates of BMI. In the EHR dataset, 18% of children were obese versus 18% in NHANES, while 35% were obese or overweight versus 34% in NHANES. BMI for an individual was highly reliable over time (intraclass correlation coefficient 0.90 for obese children and 0.97 for all children). Only 14% of visits with measured obesity (BMI ≥95%) had a diagnosis of obesity recorded, and only 20% of children with measured obesity had the diagnosis documented during the study period. Obese children had higher primary care (4.8 versus 4.0 visits, p<0.001) and specialty care (3.7 versus 2.7 visits, p<0.001) utilization than non-obese counterparts, and higher prevalence of diverse co-morbidities. The cohort size in the EHR dataset permitted detection of associations with rare diagnoses. Data sharing did not require investment of extensive institutional resources, yet yielded high data quality.
Conclusions: Multi-institutional EHR data sharing is a promising, feasible, and valid approach for population health surveillance. It provides a valuable complement to more resource-intensive national surveys, particularly for iterative surveillance and quality improvement. Low rates of obesity diagnosis present a significant obstacle to surveillance and quality improvement for care of children with obesity.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3688837 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0066192 | PLOS |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!