Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Human induced pluripotent stem (iPS) cells were differentiated into the endoderm using activin A and were then treated with fibroblast growth factor 2 (FGF2) for differentiation into intestinal stem cell-like cells. These immature cells were then differentiated into enterocyte-like cells using epidermal growth factor (EGF) in 2% fetal bovine serum (FBS). At the early stage of differentiation, mRNA expression of caudal type homeobox 2 (CDX2), a major transcription factor related to intestinal development and differentiation, and leucine-rich repeat-containing G-protein-coupled receptor 5 (LGR5), an intestinal stem cell marker, was markedly increased by treatment with FGF2. When cells were cultured in medium containing EGF and a low concentration of FBS, mRNAs of specific markers of intestinal epithelial cells, including sucrase-isomaltase, the intestinal oligopeptide transporter SLC15A1/peptide transporter 1 (PEPT1), and the major metabolizing enzyme CYP3A4, were expressed. In addition, sucrase-isomaltase protein expression and uptake of β-Ala-Lys-N-7-amino-4-methylcoumarin-3-acetic acid (β-Ala-Lys-AMCA), a fluorescence-labeled substrate of the oligopeptide transporter, were detected. These results demonstrate a simple and direct method for differentiating human iPS cells into functional enterocyte-like cells.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.2133/dmpk.dmpk-13-rg-005 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!