A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Transport and retention of colloids in porous media: does shape really matter? | LitMetric

Transport and retention of colloids in porous media: does shape really matter?

Environ Sci Technol

Department of Civil Engineering, University of Nebraska-Lincoln, Lincoln, Nebraska 68583, United States.

Published: August 2013

The effect of particle shape on its transport and retention in porous media was evaluated by stretching carboxylate-modified fluorescent polystyrene spheres into rod shapes with aspect ratios of 2:1 and 4:1. Quartz crystal microbalance with dissipation (QCM-D) experiments were conducted to measure the deposition rates of spherical and rod-shaped nanoparticles to the collector (poly-l-lysine coated silica sensor) surface under favorable conditions. The spherical particles displayed a significantly higher deposition rate compared with that of the rod-shaped particles. Theoretical analysis based on Smoluchowski-Levich approximation indicated that the rod-shaped particles largely counterbalance the attractive energies due to higher hydrodynamic forces and torques experienced during their transport and rotation. Under unfavorable conditions, the retention of nanoparticles in a microfluidic flow cell packed with glass beads was studied with the use of laser scanning cytometry (LSC). Significantly more attachment was observed for rod-shaped particles than spherical particles, and the attachment rate of the rod-shaped particles showed an increasing trend with the increase in injection volume. Rod-shaped particles were found to be less sensitive to the surface charge heterogeneity change than spherical particles. Increased attachment rate of rod-shaped particles was attributed to surface heterogeneity and possibly enhanced hydrophobicity during the stretching process.

Download full-text PDF

Source
http://dx.doi.org/10.1021/es4016124DOI Listing

Publication Analysis

Top Keywords

rod-shaped particles
24
spherical particles
12
particles
9
transport retention
8
porous media
8
attachment rate
8
rate rod-shaped
8
rod-shaped
7
retention colloids
4
colloids porous
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!